
Notes on eprint 2024/555
Sam Jaques

April 21, 2024

1 Gap SVP

Chen focuses on a slightly unique variant of gap SVP. Normally we consider the ith successive minima
λi(L) as a bound on the maximum norm of a set of i linearly independent vectors in L. Here we consider
bounds on the infinity norm of such linearly independent sets: λ∞

i (L). Our problem will be to solve SVP
for a lattice where we are promised that λ∞

2 (L) > 2λ1(L).
The reason we do this is that we will end up with superpositions over all lattice vectors in some

hypercube; this condition ensures that the difference between any two such vectors is a multiple of the
shortest vector.

Can this solve LWE? In certain cases, yes. Recall that for an LWE problem As+ e ≡ b mod q, where
A is a random m× n matrix, we can form a lattice LLWE from the basisqIm A −b

0 In 0
0 0 1

 (1)

and you can convince yourself that (−e, s, 1) is in this lattice. A bit more convincing can tell you that if
the components of e and s are drawn independently from some distribution with mean 0 and variance σ2,
the norm of (−e, s) is going to concentrate around

√
n+mσ (notice that I ignored the last component of

1, and I’m going to continue to do so).
However, the volume of this lattice is qm. The Gaussian heuristic tells us to expect that the shortest

lattice vector is
√

n+m
2πe

q
m

n+m (ignoring the +1 again). So, we can expect the second -shortest vector to follow

the Gaussian heuristic, while the shortest vector is, by design, (−e, s, 1), which is unusually short.
This is partly the reason to treat LWE as a GapSVP problem generally, but in our case we want to use

the fact that for any vector x, we know that ∥x∥∞
√
n ≥ ∥x∥2. This means we can (heuristically) expect

λ∞
2 (LLWE) ≥

1√
n+m

√
n+m

2πe
q

m
n+m =

1√
2πe

q
m

n+m (2)

And so we satisfy the required property for Chen’s algorithm to work if

1√
2πe

q
m

n+m > 2
√
n+mσ (3)

1

As far as I can tell, this is an essential condition for Chen’s algorithm (and probably we need a bit of a
gap between these terms for things to work nicely). There might be other, stronger conditions, but even
starting with this one tells us that for Kyber (taking, say, n = m = 512 and q = 3329) we would need
σ < 0.3; this is about one third the variance of Kyber’s secret and error. Kyber is safe (barely), though
I’ll emphasize that this is just a first-pass limitation on Chen’s techniques. Looking carefully at the later
parts, I think we need quite a large gap between λ∞

2 and λ1, and this seems to be a limitation to the entire
approach, not just Chen’s specific algorithm.

2 Adding Hypercubes

It’s straightforward to create the following state: ∑
y∈Zn:∥y∥∞<R

|y⟩ (4)

(One simple way is to create a uniform superposition from −R to R iin each coordinate). The value R is
chosen so that λ∞

2 > 2R > 2λ1.
For now we will assume that we can also make a superposition∑

v∈LLWE

|v⟩ (5)

(Of course this is not normalized and it is a sum over an infinite set; in fact we just need to make a
sum over a q-ary part and argue that if this is sufficiently larger than R then the final state looks the same
as if we started with the full superposition). But, once we have this set, we can combine the two states:∑

v∈LLWE

|v⟩
∑

y∈Zn:∥y∥∞<R

|y⟩ (6)

and add y to v ∑
v∈LLWE

|v + y⟩
∑

y∈Zn:∥y∥∞<R

|y⟩ (7)

and measure the result (call it y′) ∑
y∈Zn:∥y∥∞<R,y′−y∈LLWE

|y⟩ (8)

That is, we get a superposition of all small y that are separated from y′ by a lattice vector. We can pick
some v0 ∈ LLWE such that v0 is as close as possible to y′; we know that ∥v0 − y′∥∞ < R. For the rest of
the algorithm to work, we need two things:

1. That there are two vectors y1 and y2 in superposition such that y2−y1 is the shortest vector in LLWE

(call it x0)

2. For any two vectors y1 and y2 in superposition, y2 − y1 must be an integer multiple of the shortest
vector.

2

If the first one is true, the second one is easy to show. Specifically, we know that for all y remaining in
the superposition, there is some lattice vector v such that y+ v = y′. Thus, we have y1 + v1 = y′ = y2 + v2
if both y1, y2 are in the superposition; then we have that y2 − y1 = v2 − v1 ∈ L. If v2 − v1 is not a
scalar multiple of x0 (the shortest vector), then it is linearly independent of x0, and we also know that
∥v2− v1∥∞ = ∥y2− y1∥∞ < 2R, by the triangle inequality. Thus, since ∥x0∥∞ < 2R as well, we would have
two linearly independent vectors of infinity norm at most 2R, but that contradicts λ∞

2 > 2R.
But showing the first is a bit more difficult.

2.0.1 Superpositions of the Shortest Vector

First, this is what the superposition over the lattice looks like:

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Then this is what it looks like with infinity-norm balls around each point:

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Measuring y′ is like selecting a random point from a random one of these “balls” (i.e., squares). Notice
that in the drawing above, the squares are too small: we will be left with only one lattice point after
measuring.

3

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

This next one has squares big enough to overlap, but the lattice does not have a big enough gap.
Squares from different “rows” are overlapping. Thus, we need a bigger gap in the lattice:

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

This is more like what Chen needs. If we measure y′ in the darkest regions, that overlaps 3 boxes, so
we’re left with 3 points in superposition; in the lightest regions, we’re only left with 1.

In Chen’s algorithm, we don’t get uniform probabilities over the boxes, but it’s a good start for now.

2.1 A first attempt

If the width of these boxes is big enough, what we’ll end up with is some state like

B∑
k=−B

|y0 + kx0⟩ (9)

where y0 is the shortest vector satisfying y′ − y0 ∈ L.
This is already quite an interesting state! It seems to capture some information about the shortest

vector x0. Indeed, if we immediately took a QFT (over 2R, since that’s the bound on the size of integers
in the register currently) we would get ∑

z∈Z2R

|z⟩
B∑

k=−B

e2πi
⟨y0+kx0,z⟩

2R (10)

4

and we can move the y0 part out of the sum and we get

∑
z∈Z2R

e2πi
⟨y0,z⟩
2R |z⟩

B∑
k=−B

e2πik
⟨x0,z⟩
2R (11)

If B = R, then we would be summing roots of unity unless ⟨x0, z⟩ ≡ 0 mod 2R, so measuring z would
give us a vector orthogonal to x0. With enough of these, we would simply find x0 with linear algebra.

Unfortunately, we can’t have B = R: B was defined as the maximum value where 2Bx0 fits in a box
of width 2R. So B

R
≤ ∥x0∥∞.

Not to despair! If ⟨x0,z⟩
2R

≈ 1
2B

Z, i.e., e2πi
⟨x0,z⟩
2R is approximately a 2Bth root of unity, then the phases

will similarly cancel out. More generally, if ⟨x0, z⟩ mod 2R is too big, then adding up B powers of it will
be approximately 0. Thus, we have an equation something like

⟨x0, z⟩ ≈ 0 mod 2R (12)

Is this useful? Almost: we would rewrite it as

⟨x0, z⟩+ e ≡ 0 mod 2R (13)

for small e, and now it looks like what it is: an LWE sample. We could repeat this process and get
uniformly random z satisfying these properties, but ultimately we’re just reducing LWE back to LWE.

In fact, this looks a bit like Regev’s original reduction from SVP to LWE. It’s not quite the same; I’m
not sure if there are obstacles to completing the LWE reduction this way (we could have used any GapSVP
problem to begin with, and we’ve reduced it to something which is almost LWE).

Nor is too different from Eldar and Hallgren’s 2022 paper () solving BDD with a quantum algorithm.
What we’re really doing is solving LWE as a BDD problem, and implicitly using Kannan’s embedding to
map the BDD problem to an SVP problem. Eldar and Hallgren attack BDD directly by noting that once
we have a superposition of boxes around lattice points, that state is an eigenstate of addition by lattice
vectors. Since a BDD challenge is close to a lattice vector, the superposition is close to an eigenstate of
addition by the BDD challenge. However, the “closeness” is not good enough: the only BDD challenges
they efficiently solved turned out to be polynomial solvable classically.

3 Convolutions

Rather than have uniform superpositions, we can add some amplitude to each state. That is, we can
consider a more general case where we have the state∑

x

g(x) |x⟩
∑
y

f(y) |y⟩ (14)

where g and f are arbitrary, and I’m deliberately being vague about the range of the sums of x and y since
they could be almost anything at this point.

We can then do the same thing of adding x to y and measuring. This gives a result y′, and the remaining
state is ∑

x

g(x)f(y′ − x) |x⟩ (15)

5

https://arxiv.org/abs/2201.13450

This looks sort of like a convolution. If we apply a QFT mod P we get:∑
z

|z⟩
∑
x

ei
xz
P g(x)f(y′ − x) (16)

Again, this looks almost like a convolution, and almost like a Fourier transform. You might be tempted to
think that since the Fourier transform of a convolution is the product of the Fourier transforms, that we
could use that identity here, but it doesn’t quite work. I am not sure of how to approach this generally.

3.1 Complex Gaussians

For notational convenience, I will define a Gaussian-like function

G(x;µ, v, θ) = exp
(
πv(x− µ)2

)
exp (2πiθx) (17)

More or less I’m just substituting v = 1
πσ2 in the normal notation. My goal at this point is to create a nice

set of rules for multiplying, composing, shifting, convoluting, etc., this kind of function. I’m imagining
that v can be complex but µ and θ are real. This avoids a situation where a complex mean would create
a real positive exponential. Unlike Chen I’m not going to split v into its real and imaginary components,
which makes the equations a bit cleaner.

Parameters Some quick identities:

G(x+ c;µ, v, θ) = G(x;µ− c, v, θ) (18)

and
G(cx;µ, v, θ) = G(x;µ/c, vc2, cθ) (19)

Multiplication We can compute (it’s tedious):

G(x;µ1, v1, θ1)G(x;µ2, v2, θ2) = exp
(
x2(v1 + v2)− 2x(µ1v1 + µ2v2) + µ2

1v1 + µ2
2v2
)
exp (2πix(θ1 + θ2))

(20)

... (21)

=G

(
x;

µ1v1 + µ2v2
v1 + v2

, v1 + v2, θ1 + θ2

)
exp

(
(µ1 − µ2)

2v1v2
v1 + v2

)
(22)

Shifts If we multiply G by ecx for real c, what happens? We need to complete the square in the exponent;
we end up with

G(x;µ, v, θ)eπcx =exp
(
π(vx2 − v2xµ+ vµ2 + cx)

)
eiπθx (23)

... (24)

=G
(
x;µ− c

2v
, v, θ

)
exp (πc(µ− c/4v)) (25)

Shifting by imaginary ϕ is much easier:

G(x;µ, v, θ)e2πiϕx = G(x;µ, v, θ + ϕ) (26)

6

Fourier Transforms Chen gives this one:

F (G(x; 0, v, 0)) (z) =
1√
v
G(z; 0, 1

v
, 0) (27)

which we should extend to non-centered distributions with phase. This is easy using the fact that,
generally

F(f(x+ a))(z) = e−2πiazF(f(x))(z) (28)

so we have that

F (G(x;µ, v, 0)) (z) =
e2πiµz√

v
G

(
z; 0,

1

v
, 0

)
(29)

=
1√
v
G(z; 0,

1

v
, µ) (30)

And this works in reverse: if we already had a phase θ, then the phase multiplier of x in the Fourier
transform integral is θ + z, so we have

F (G(x;µ, v, θ)) (z) =
1√
v
G

(
z + θ, 0,

1

v
, µ

)
(31)

=
1√
v
G

(
z,−θ,

1

v
, µ

)
(32)

In short: Fourier transforms flip the variance and exchange phase for mean.
(fun fact: this shows that G is an eigenfunction of the Fourier transform with eigenvalue i, because

repeating the Fourier transform 4 times will return to the same function.)

3.2 Second Attempt: Real Gaussians

It is relatively straightforward () to make a state like∑
y∈Zn

G(y; 0, v, 0) |y⟩ (33)

and so, doing the convolution-like thing with a sum of lattice vectors, we can obtain∑
x∈L

G(y′ − x; 0, v, 0) |y′ − x⟩ (34)

which we can then rewrite as scalar multiples of the shortest vector as∑
k∈Z

G(y0 + kx0; 0, v, 0) |y0 + kx0⟩ (35)

A quick digression: We would actually catch many more lattice vectors, but if the Gaussian is narrow
enough, we can ignore them because the amplitude on these states is too small (this is analogous to choosing
the hypercube width between λ∞

2 and λ1). However, we also want our Gaussian to be wide enough to
catch several multiples of x0, otherwise we don’t really have any useful information about x0.

7

https://arxiv.org/abs/quant-ph/0208112

−4 −2 0 2 4

0

1

2

3

4

• • • • •

•

• • • • •• • • • • • • • • • •

Figure 1: Illustration of how sums of Gaussians over integers catch when the mean is integer. In black,
the mean is integer, and the sum is 3.89; in blue the mean is 0.5, and the sum is less than 10−4

Anyway, from this state we do a QFT and get:∑
z∈Zn

p

|z⟩
∑
k∈Z

e2πi⟨z,y0+kx0⟩/PG(y0 + kx0; 0, v, 0) (36)

=
∑
z∈Zn

p

|z⟩ e2πi⟨z,y0⟩/P |z⟩
∑
k∈Z

G(y0 + kx0; 0, v, ⟨x0, z/P ⟩) (37)

It’s a bit annoying to deal with the mix of vectors and scalars here; let’s expand this out to remove the
vector terms:

G(y0 + kx0; 0, v, ⟨x0, z/P ⟩) = exp
(
v(y0 + kx0)

2
)
e2πiki⟨x0,z/P ⟩ (38)

= exp
(
−πv(∥y0∥2 + 2k⟨y0, x0⟩+ k2∥x0∥2)

)
e2πiki⟨x0,z/P ⟩ (39)

= exp

(
−πv∥x0∥2

(
k +

⟨y0, x0⟩
∥x0∥

)2

− πv
⟨y0, x0⟩2

∥x0∥2
− πv∥y0∥2

)
e2πiki⟨x0,z/P ⟩

(40)

=G

(
k;−⟨y0, x0⟩

∥x0∥2
, v∥x0∥2,

⟨x0, z⟩
P

)
exp

(
−πv

(
⟨y0, x0⟩2

∥x0∥2
− ∥y0∥2

))
(41)

What is our goal here? We want to have some destructive/constructive interference that depends on z, so
that we are more likely to measure z with certain properties. This means that the exp(·) term on the right
is actually meaningless, because it does not depend on z nor k. Really, it will get normalized away.

How useful is this? Well, if the (inverse) variance v∥x0∥2 is large, then the Gaussian will concentrate

sharply around 0. Then the sum will be close to 1 if − ⟨y0,x0⟩
∥x0∥2 is near an integer, and will be near 0 otherwise.

See Figure 1. Unfortunately, this seems to be totally independent of z.
I think y0 is essentially a random n-dimensional vector, subject to length restrictions. Thus it is likely

to be nearly orthogonal to x0, so
⟨y0,x0⟩
∥x0∥2 ≈ 0 will be close to an integer.

If v∥x0∥2 is small, then the Gaussian will be spread out. (see Figure 2) If the phase multiplier is large,
then this will likely cancel everything out; if the phase multiplier is small, then it will not cancel. The

8

−4 −2 0 2 4

0

5 · 10−2

0.1

0.15

0.2

•
•

•

•

•
•

•

•

•

•
••

•

•

•

• •

•

•

•
• •

Figure 2: When variance is wide, the sum over integer values is basically the same, regardless of where the
mean is; the difference between the black and blue sums is less than 0.01

phase multiplier is ⟨x0, z⟩/P , so this should carry information about x0: we are more likely to measure z
such that ⟨x0, z⟩ ≈ 0 mod P (see Figure 3).

In fact, we can apply the Poisson summation formula to make this a bit more precise. Specifically, the
“lattice” is just Z, whose dual is also Z and whose volume is 1. Thus we get∑

k∈Z

G(k;µ, v, θ) =
∑
j∈Z

G(j;−θ, 1/v, µ) (42)

and in our case that works out to:∑
j∈Z

G

(
j;−⟨x0, z⟩

P
,

1

v∥x0∥2
,−⟨y0, x0⟩

∥x0∥2

)
(43)

Since ⟨y0, x0⟩ ≈ 0, this makes the behaviour more obvious: when 1
v∥x0∥2 is large, this is quite small then

⟨x0, z⟩/P is not close to an integer.
Notice that so far this is not much different than just using the boxes. Does the real Gaussian give us

any extra information? I think it’s worse, and here’s a short proof: Adding up a Gaussian with phases is
like taking the inner product of a vector of Gaussian entries, with a vector of powers of roots of P th roots
of unity. Suppose we center the roots of unity vector, i.e., the vector is(

e2πi
−P/2

P , e2πi
−P/2+1

P , . . . , e2πi
−1
P , 1, e2πi

1
P , . . . , e2πi

P/2
P

)
(44)

and we want something orthogonal. Consider vectors of the form:0, . . . , 0︸ ︷︷ ︸
(P−k)/2

, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
(P−k)/2

 (45)

That is, it’s a centered all-ones vector, but only of length k (please ignore my off-by-one errors). Clearly
(a) the inner product of any of these with the centered roots of unity is real (since we always add a phase
and its negation), (b) the smaller k is, the less orthogonal this is to roots of unity.

9

−4 −2 0 2 4

−0.2

−0.1

0

0.1

0.2

•

• •

•

•

•

• •

•
• •

Figure 3: Wide phased Gaussian (real part). The phases causes it to oscillate around 0, so it’s likely to
add up to close 0 unless either (a) the variance is quite small, (b) the phases are somehow cancelled out

But, we can form a Gaussian distribution as a convex combination of these centered all-ones vectors.
Or at least, a truncated Gaussian distribution., where x values that are too large are cut off However,
notice that in Chen’s algorithm the Gaussian must be truncated, because we only started with a bounded
radius anyway. Thus, the real Gaussian gives us a worse selection of mostly-orthogonal z than the uniform
boxes.

3.3 Third Attempt: Complex Gaussians

Recall that when we used the Gaussian, the state after the QFT is∑
z∈Zn

p

|z⟩ e2πi⟨z,y0⟩/P exp

(
−πv

(
⟨y0, x0⟩2

∥x0∥2
− ∥y0∥2

))∑
j∈Z

G

(
j;−⟨x0, z⟩

P
,

1

v∥x0∥2
,−⟨y0, x0⟩

∥x0∥2

)
(46)

What if the variance v was complex?
If v is complex, we end up with some extra phase terms depending on the input j to the Gaussian,

where the phase grows quadratically with j. This is a bit strange.
If the phase grew only linearly with j, then if the phase coefficient of j matched the phase multiplier

(more specifically: if the linear phase coefficient of j equalled ⟨y0,x0⟩
∥x0∥2), then the phases would cancel out and

we would have constructive interference over the entire QFT. Or more specifically, if only specific values
of z could make this happen, that would amplify those z.

Chen notices that this can happen, sort of: suppose that we happened to choose v such that the
imaginary part of 1

v∥x0∥2 is close to 2Z. Then

G

(
j;−⟨x0, z⟩

P
,

1

v∥x0∥2
,−⟨y0, x0⟩

∥x0∥2

)
= exp

(
− π

v∥x0∥2

(
j2 + 2j

⟨x0, z⟩
P

+
⟨x0, z⟩2

P 2

))
e
−2πi

⟨y0,x0⟩
∥x0|2 (47)

Since j2 ∈ Z and the imaginary part of 1
v∥x0∥2 is close to 2Z, then the quadratic part of the phase

vanishes from the equation because it is always an integer multiple of 2πi. Let’s write 1
v∥x0∥2 = η + iν for

real η and ν (where ν ∈ 2Z), so we can rewrite the above equation as a real Gaussian with some phase:

10

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

• • • •

•

•

•

• • • •• • •

•

• •

•

• • • •

−4 −2 0 2 4

−0.4

−0.2

0

0.2

0.4

• • •
•

• •

•
• • • •• • • •

•

•

•

• • • •

Figure 4: On the left, the Gaussian is too wide to be a good distinguisher: the blue sum to 0.999993 and
the black sums to 1.000006. On the right, the phase reduces the sums to around 0.14. Chen’s “Karst
waves” seem to give the reduction from both.

= G

j,−⟨x0, z⟩
P

, η︸︷︷︸
real variance

,−⟨x0, y⟩
∥x0∥2

− ν
⟨x0, z⟩
P︸ ︷︷ ︸

phase part

 (48)

Does this help us at all? I don’t know that it does. The problem is that after we did the Poisson
Summation formula, which flipped the variance, we assumed the variance became rather small. Thus, the
sum over j probably concentrates quite sharply the integers, and the sum will be large when ⟨x0,z⟩

P
is close

to an integer, and small otherwise. Having a different phase multiplier doesn’t really matter because the
bulk of the amplitude is on just one j, so there is no opportunity for phases in the sum over j to interfere
constructively or destructively.

However, the interference wasn’t perfect before; we expected that values of z for which ⟨x0,z⟩
P

are not
near an integer will end up being measured with non-negligible probability. With the phase, we get an
extra suppressive effect: when ν ⟨x0,z⟩

P
is not close to an integer, there is an extra phase in the sum and it

should add up to something closer to 0. See Figure 4 for an attempt at illustrating this.
(Well, really we want − ⟨x0,y⟩

∥x0∥2 − ν ⟨x0,z⟩
P

near an integer, but as argued before I think ⟨x0,y⟩
∥x0∥2− ≈ 0 anyway

so I feel justified ignoring this term).
At this point I have no idea how much this suppressive phase effect helps. It seems like it could give a

better GapSVP to LWE reduction, but I’m not sure beyond that.

Karst Waves. This phenomenon where the imaginary part of 1
v
is close to 2Z is what creates what Chen

calls “Karst Waves”. My explanation is completely different from Chen’s on why they seem to be useful.
Let’s check Figure 1 from Chen’s paper.

11

The top rows are the real parts of complex Guassians, and the bottom are their Fourier transforms. The
Fourier transform is essentially the sum with different phase multiples, so when the size of the Fourier
transformed value is small, then that means we are unlikely to measure z such that ⟨x0, z⟩/P has this
value.

To make this more concrete, look at the graph on the left. Here the complex part is rather small; this
is pretty close to just a real Gaussian. We can see that the DFT concentrates around 0, meaning we are
basically selecting ⟨x0, z⟩/P ≈ 0. That is, it cancels out unless the phase is 0.

In the middle we have a large quadratic phase in the complex Gaussian. Now sometimes it interferes
constructively with the linear phase of the DFT, and sometimes it interferes destructively. The DFT seems
to randomly be large and small; Chen calls this “chaotic”. It will be hard so extract information about
⟨x0, z⟩ from this.

On the right we have “Karst Waves”. The imaginary part of the variance is twice an integer so the
complex Gaussian effectively adds a linear phase, which either interferes constructively or destructively
with the DFT. We might ask, however: why doesn’t it create a narrower interference?

The problem is that if the imaginary part (which I labelled as ν above) is twice an integer, then the
new linear part of the phase is ν

P
⟨x0, z⟩. This will interfere constructively not only when ⟨x0, z⟩ ∈ PZ,

but when ⟨x0, z⟩ ∈ P
ν
Z. Thus, we end up with more approximate modular equivalences (and possibly less

approximate?) but over a smaller modulus, i.e., ⟨x0, z⟩ ≈ 0 mod P
ν
.

Is this useful? I have no idea; it would really depend on whether the final approximation is tighter
than the real Gaussian/uniform case (if it’s not tighter, there’s no point decreasing the modulus size!).
I think it must be, at least a little bit, because as I previously argued we have the suppression around
non-integer values from the real part of the Gaussian, and the suppression from the phase. These seem
like independent effects, so I think we get them working together.

Can a tighter approximation (i.e., smaller error) but a smaller modulus help? It depends. Certainly it’s
a nice tool to have when analyzing LWE problems. And if we can suppress the error sufficiently smaller

12

then 1, then there is no error and we could solve the system linear algebra. I think that’s what Chen tried
to do, ultimately.

But a non-zero error might be useful. An interesting part of this reduction is that each z we measure is
independently random. Thus, we have a polynomial time quantum oracle to produce new LWE samples.
Having lots of samples is powerful: for example, with binary error, we only need O(n2) samples to break
LWE in polynomial time over any modulus (the Arora-Ge attack).

Thus, if the Karst waves allow us to suppress the error enough, then maybe we can use other techniques
to break the resulting LWE instance faster than expected.

4 The Rest of The Paper

Once these Karst waves are produced, the rest of the paper is:

1. do another convolution with another complex Gaussian

2. measure the top bits and repeat

3. do more convolutions?

4. do something with primes?

Without understanding much about the latter parts of the paper, I’m skeptical that they can fix
things. At the end of step 2, with the interference as above, what we essentially have is a superposition
over modified LWE samples. The remaining steps don’t pass my “sniff test” that they are doing enough
to extract important information from what they’re given. Partly, I just have no intuition for why these
steps should do anything helpful.

I have some explanation on the effect of measuring the top bits, which I might add to this document
at a later date.

5 Opinionated Outlook

Overall, my take is:

• a lot of the ideas are well-known quantum lattice ideas;

• a number of ideas are genuinely new, and the complex Gaussians do seem useful;

• we might be able to patch up the arguments with the complex Gaussians and get a correct but less
powerful result;

• I don’t expect anyone to take these results to something that could break conservative LWE param-
eters like Kyber or Dilithium

13

	Gap SVP
	Adding Hypercubes
	Superpositions of the Shortest Vector
	A first attempt

	Convolutions
	Complex Gaussians
	Second Attempt: Real Gaussians
	Third Attempt: Complex Gaussians

	The Rest of The Paper

