
PQCrypto Course Notes
CO 789 - Winter 2024
University of Waterloo
Instructor: Sam Jaques

April 22, 2024



2



Contents

1 Introduction 7

2 Learning With Errors: Kyber and Dilithium 9
2.1 Learning With Errors . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Pathological LWE . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Parameter Reductions . . . . . . . . . . . . . . . . . . 12
2.1.4 Two main forms of LWE . . . . . . . . . . . . . . . . . 15
2.1.5 Search and Decision . . . . . . . . . . . . . . . . . . . 17
2.1.6 LWE Encryption . . . . . . . . . . . . . . . . . . . . . 18

2.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Short Vectors . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Close Vectors . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Connection to LWE . . . . . . . . . . . . . . . . . . . . 22
2.2.4 Primal Attacks . . . . . . . . . . . . . . . . . . . . . . 25
2.2.5 Dual Attacks . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.6 Lattice Basis Reduction . . . . . . . . . . . . . . . . . 33
2.2.7 SVP Solvers . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.8 Sieving . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 LWE Constructions . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.1 Kyber . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.2 Dilithium . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Hash-based Digital Signatures 89
3.0.1 Hash Function Attacks . . . . . . . . . . . . . . . . . . 90

3.1 Winternitz Signature Scheme . . . . . . . . . . . . . . . . . . 90
3.1.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.1.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . 100

3



4 CONTENTS

3.1.3 Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2 Merkle Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3 XMSS: Extended Merkle Signature Scheme . . . . . . . . . . . 103

3.3.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.3 Statefulness . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4 Goldreich Signature Scheme . . . . . . . . . . . . . . . . . . . 107
3.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5 Forest of Random Subsets (FORS) . . . . . . . . . . . . . . . 112
3.5.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6 SPHINCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.6.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . 117
3.6.2 Multitarget Attack . . . . . . . . . . . . . . . . . . . . 117

4 McEliece (Code-based Crypto) 119
4.1 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . 119

4.1.1 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . 121
4.1.2 Hardness of Decoding . . . . . . . . . . . . . . . . . . . 121

4.2 Code-Based Cryptography . . . . . . . . . . . . . . . . . . . . 122
4.3 Code-Based Protocols . . . . . . . . . . . . . . . . . . . . . . 124

4.3.1 Key Encapsulation Mechanisms . . . . . . . . . . . . . 125
4.3.2 Secure Code-based KEM . . . . . . . . . . . . . . . . . 126
4.3.3 Neideretter Variant . . . . . . . . . . . . . . . . . . . . 130

4.4 Goppa Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.4.1 Binary Fields . . . . . . . . . . . . . . . . . . . . . . . 134
4.4.2 Defining Goppa Codes . . . . . . . . . . . . . . . . . . 135
4.4.3 Decoding Goppa Codes . . . . . . . . . . . . . . . . . . 138
4.4.4 Key Facts . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5 Final Description . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.6 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.6.1 Recovering the Code . . . . . . . . . . . . . . . . . . . 145
4.6.2 Information Set Decoding . . . . . . . . . . . . . . . . 146

5 MPC-in-the-head 149
5.1 Multi-Party Computation . . . . . . . . . . . . . . . . . . . . 149

5.1.1 Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . 149
5.1.2 Affine Computations . . . . . . . . . . . . . . . . . . . 150



CONTENTS 5

5.1.3 Multiplications . . . . . . . . . . . . . . . . . . . . . . 151
5.1.4 General Computations . . . . . . . . . . . . . . . . . . 151
5.1.5 MPC Difficulties . . . . . . . . . . . . . . . . . . . . . 152

5.2 MPC-in-the-head . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2.1 Background: Commitment Schemes . . . . . . . . . . . 153
5.2.2 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . 154



6 CONTENTS



Chapter 1

Introduction

These are lecture notes from a 2024 graduate topics course on post-quantum
cryptography. My goal in the course was to work towards a few schemes –
Kyber, Dilithium, SPHINCS+, and Classic McEliece – as directly as possible,
hoping that roughly the entire submission document and specification for
each would be accessible to anyone who completed the course. The intent
was not to cover the topics as they developed historically, resulting in a
somewhat skewed picture of the field.

If there are errors, omissions, or unclear sections, please send comments/questions
to sejaques@uwaterloo.ca.

7

mailto:sejaques@uwaterloo.ca


8 CHAPTER 1. INTRODUCTION



Chapter 2

Learning With Errors: Kyber
and Dilithium

The goal here is to get to a point where you can read the submission spec-
ification and/or documentation for Kyber and Dilithium (lattice-based key
encapsulation mechanism and signature scheme, respectively), and roughly
understand all the parts. This means that unlike other notes on lattice
cryptography, I will not take a historic route, nor will I cover much of the
fundamentals of lattices. The outline is instead something like:

1. explore the ins and outs of the LWE problem and its parameters;

2. explain how one can use latttice solvers to attack LWE (and completely
ignore the research on the reverse direction)

3. give all the important details that go into the construction of Kyber
and Dilithium.

2.1 Learning With Errors

2.1.1 Basic Definitions

An LWE(n,m, q, χs, χe) instance is formed by sampling a uniformly random
m×n matrix A with entries in Z/qZ, a vector s ∈ (Z/qZ)n from the distribu-
tion χs, and a vector e ∈ (Z/qZ)m from the distribution χe, and outputting
(A, b := As+ e mod q).

9



10CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

The number m is sometimes referred to as the number of “samples”.
The LWE(n,m, q, χs, χe) search problem is, given (A, b) as sampled above,

to recover s. [What if s is not unique? I address that below].
The LWE(n,m, q, χs, χe) decision problem is: a bit b′ ∈ {0, 1} is drawn

uniformly at random, and if b′ = 0, then one is given an LWE sample (A, b) as
above, and if b′ = 1, then one is given (A, b) where A is a uniformly random
n×m matrix and b is a uniformly random m-dimensional vector (both with
entries in Z/qZ. The problem is to determine whether b′ = 0 or b′ = 1.

Throughout these notes I might equivocate between χs being a distribu-
tion, a random variable, or the distribution of individual components of s.
Some common distributions for χs:

1. Uniform in Zn
q

2. Uniform with exactly t non-zero entries, either all 1 or {−1, 1} ran-
domly.

3. Discrete Gaussian (independently chosen in each coordinate)

4. Centered binomial (independently chosen in each coordinate)

Common error distributions are the same, except we do not use uniform
error. If we allow uniformly random errors, then LWE is easy to solve: Given
(A, b).

2.1.2 Pathological LWE

LWE has so many parameters, there is a huge space of problems that it
captures. There are certain pathological cases which are easy to solve (for
search) or impossible to solve (for decision). For example, if χe is uniform,
then it is easy to solve search LWE: given (A, b), select a random s from χs,
and declare that as a solution. It satisfies As + e = b for some error e. I
think you can show that if A is full rank then this has exactly the expected
distribution, but intuitively, this is a valid solution.

To avoid such cases, I define “unique LWE”, which is just something I
made up, not a standard definition:

Definition 2.1.1. An LWE problem LWE(m,n, q, χs, χe) is “unique” if, for
a matrix A sampled uniformly at random and two pairs (s, e) and (s′, e′)
sampled independently from (χs, χe) such that As+ e = As′ + e′, then s = s′

and e = e′ with high probability.



2.1. LEARNING WITH ERRORS 11

If the function (s, e) 7→ As+ e is injective, then the LWE instance will be
unique. When the values of s and e are strictly bounded, this can be shown,
but uniqueness captures the same property when we use a distribution where,
with low probability, s and e can take on arbitrary values.

Later we will show that, more or less, we need ∥s∥+∥e∥ ≤ O(
√
nq1−

n
m+n ).

A note on probabilistic algorithms. The way we talk about probabilis-
tic algorithms and reductions in most algorithms courses is not sufficient for
LWE, so I will discuss a few issues here.

First, we typically define a probabilistic algorithm so that on any input,
it has some bounded probability of success and/or failure. However, we treat
LWE as an “average-case” problem, where we consider algorithms that might
fail with high probability for certain inputs (A, b), but those inputs should
be sampled with low probability.

Here’s an example of the difference: the problem PRIMES asks us to
decide whether a given integer is prime or not. There is a dead-easy O(1)
algorithm which succeeds with asymptotically high probability: always out-
put “composite”. By the prime number theorem, only O(1/ log n) numbers
of size up to n are prime, so on almost all inputs, we are correct. Obviously,
this is useless, so PRIMES is defined as a worst-case problem: on any in-
put (i.e., including worst-case inputs), we should succeed with a probability
above some bound. Here the “probability” is taken over the randomness
inherent to the algorithm itself, not over a random selection of inputs.

For LWE (and cryptographic problems in general), we mostly don’t care
about worst-case behaviour. From a defender’s point-of-view, it doesn’t help
me if breaking the scheme is hard in the worst-case, I want my keys to be
hard to break with overwhelmingly high probability. From an attacker’s
point-of-view, I don’t care if some people get hard-to-break keys; if I can
succeed at attacking a non-negligible fraction of people’s keys, I can still do
whatever nefarious things I want to do.

All of this is to say that when we say that an algorithm “solves search
LWE”, what we really mean is that for a non-negligible fraction of samples
(A, b) drawn from the LWE distribution, we successfully recover s.

This leads to a second problem: what if s is not unique? What if (s, e) 7→
As+ e is not injective?

In the “unique” LWE case, this is straightforwardly solved because, for
(A, b) sampled from the LWE distribution, the distribution of (s, e) such that



12CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

As+ e = b is very narrowly concentrated on a particular (s, e), so if we find
that pair, then with all but negligible probability, we have recovered “the” s.

But there are other cases. For example, if A does not have full rank
(which happens with small, but non-negligible probability), then there is an
entire affine space of solutions. In the case of uniform secrets, these are all
equally likely! Thus, a more complete way to define search LWE is that we
should produce an output which we can represent by a random variable S,
such that

Pr[S = s] = Pr[s← χs, e← χe|As+ e = b] (2.1)

That is, there is a conditional distribution of all (s, e) such that As+ e, and
we should output s according to that distribution.

For the most part, we can ignore these issues, but they come up some-
times.

2.1.3 Parameter Reductions

We have five different parameters to vary for LWE. We can make a table of
how they change things:

Parameter Easier Harder
m Large Small
n Small Large
q Large Small
χs Narrow Wide
χe Narrow Wide

Number of samples, m: The parameter m is called the “number of
samples” for historical reasons, because one imagined a case where there
is an oracle that will give you random vectors a and noisy inner products
⟨a, s⟩+ e upon request. So the complexity of the problem can be graded by
how many samples you ask for. In practical cryptosystems, you only ever get
a fixed number for a given secret s.

Intuitively, each sample gives you some information, so the more samples
you get, the more information you have, and the easier the problem gets.
Indeed, two simple edge cases: if m = 1 the problem is basically impossible
(homework), if m ≫ qn then you would expect to get the same row of A
many times – each sample will be ⟨a, s⟩ + e for different e, so you can take



2.1. LEARNING WITH ERRORS 13

the average of these samples and get ⟨a, s⟩+ e, and e should be computable
from χe.

(Much tighter attacks are due to BKW [BKW00] and Arora-Ge [AG11]. I
think Arora-Ge gives a poly-time attack if m = Ω(n2 log2 q), but their result
is based on binary secrets and error and it’s possible something goes wrong
in the reduction).

To prove that smaller m is more difficult, we will give a reduction.

Lemma 2.1.1. Suppose χe is a product distribution (i.e., each element of e
is sampled independently and identically). Then LWE(m,n, q, χs, χe) reduces
to LWE(m′, n, q, χs, χe) for m′ ≤ m as long as the second LWE problem is
unique.

Proof. We’re given (A, b) as a sample from LWE(m,n, q, χs, χe). We simply
give the firstm′ rows ofA and the firstm′ elements of b to the LWE(m′, n, q, χs, χe)
oracle.

Call the new problem (A′, b′), Since A was uniformly random, so is A′.
We also know that b′ = A′s+ e′, where e′ is the first m′ elements of b, and by
assumption on the structure of χe, we know it still has the right distribution.
Thus, this follows the correct distribution for an LWE sample and the oracle
will return s′ from χs such that As′ + e′′ = b′ for some e′′ from χe. Since the
problem is unique, we know s′ = s, and we solve the original problem.

Notice that uniqueness is necessary for this proof to go through. We
can’t reduce anything to LWE with m = 1 because it’s trivial to solve this
(randomly sampled s and e have a 1/q chance of equalling b).

Secret dimension n: Intuitively, larger secrets should be harder to find.
We can prove this with a reduction:

Lemma 2.1.2. LWE(m,n, q, χs, χe) reduces to LWE(m,n′, q, χs×χ′
s, χe) for

any n′ ≥ n and any distribution χ′
s on Zn′−n

q , as long as the second is unique.

Proof. Here the notation χs×χ′
s means that we sample the first n coordinates

from χs and the next n′ − n from χ′
s.

We’re given (A, b) as a LWE(m,n, q, χs, χe) sample. We generate n′ −
n random columns A′, and sample a random s′ from χ′

s. Then we give
([A|A′], b+ A′s′) to the LWE(m,n′, q, χs × χ′

s, χe) oracle.
Since A′ was uniformly random, so is [A|A′]. Then b = As+ e+ A′s′, so

it follows the right distribution as well, and the oracle will return some s′′.
By uniqueness, (s, s′) = s′′, so we can just take the first n coordinates and
we solved the first problem.



14CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Modulus q: This one is a bit surprising, but larger q is easier to solve.
One way to think of it is that if we hold the errors fixed, then the size of
errors relative to the space that they live in will shrink. Later, lattice attacks
will make this more precise.

We’ll show just a simple reduction for this one. There are more general
reductions, but they are approximate and annoying; I only want to give the
flavour of things here.

Lemma 2.1.3. LWE(m,n, qp, χs, χe) reduces to LWE(m,n′, q, χs, χe) for any
natural numbers q, p such that both problems are unique, and where χs and
χe produce values that are bounded by q with all but negligible probability.

Proof. Given (A, b) as an instance of the first problem, we just give (A
mod q, b mod q) to the second oracle. Since b ≡ As + e mod pq, this alge-
braic relation survives the modular reduction: b ≡ As+ e mod q as well.

Since s = (s mod q) and e = (e mod q) with high probability (by as-
sumption on χs and χe), this new b satisfies the right distribution and the
oracle will give us some s′ ∈ Zn

q such that As′+e′ ≡ b mod q. By uniqueness
of the second problem, (s′, e′) = (s, e) mod q (since (s, e) is a valid solution
to the problem mod q). But since s = (s mod q), then s′ = s and we are
done.

As an exercise, you could show that this also holds with uniform χs.

Probability Distributions

Intuitively, the more noise we add, the harder this problem should get. One
edge case (no noise at all) is definitely easy. We’ll prove this with the following
lemma:

Lemma 2.1.4. LWE(m,n, q, χs, χe) reduces to LWE(m,n, q, χs+χ′
s, χe) for

any distribution χ′
s such that the second problem is unique.

Here I’m abusing notation somewhat: χs + χ′
s means that we sample s

from χs, then sample s′ from χ′
s, then add them together.

Proof. Given (A, b = As + e) from the first problem, we sample s′ from χ′
s,

and give (A, b + As′) to the second oracle. Clearly b + As′ = A(s + s′) + e,
so it has the right distribution and we get a response s′′. By uniqueness,
s′′ = s+ s′; we subtract s′ from s′′ to get s.



2.1. LEARNING WITH ERRORS 15

This was maybe the easiest proof, but it has many implications:

• The exact same proof works for e.

• We can shift any distribution by adding a constant distribution, and
so we can assume E[χs] = 0.

• Symmetric distributions must be the hardest type, since we can just add
χs + (−χs) and this is symmetric about its mean (which is 0 WLOG)

• We cannot necessarily add all distributions, because then LWE might
not be unique. But for tall LWE, this shows that uniform secrets are
the hardest type of secret (adding a uniform secret distribution to any
other distribution makes it uniform).

• A Gaussian distribution ought to be hardest. The reasoning is that if
we take k independent and identically distributed random variables Si,
then S1 + · · · + Sk converges to normal by the central limit theorem.
Thus, for almost any distribution, there is a harder distribution which
is normal (albeit wider). The only exception is if we do not have any
room to make the error wider without losing uniqueness.

For a lot of our early analysis, a uniformly bounded error would be easiest
to analyze (i.e., choose each component of e between −β and +β for some
β). However, in practice we use Gaussians or approximations to Gaussians in
most cases, mostly because the lattice reductions only work with Gaussians
but partly because of the above reasoning.

2.1.4 Two main forms of LWE

There are two main forms of LWE that we use in practice.
Tall LWE: In this case we choose m > n and (often) use χs = U , the

uniform distribution. The hardness in this case ends up being that the span
of A is only an n-dimensional subspace of Zm

q , and we’re given something
near to that subspace.

Normal form LWE: Here we take m = n and χs = χe. Since χe must
always be short, this means both secret and error are short. Here we expect
the image of A to cover the entire space, but the problem is that the preimage
of most points is large.

It turns out that these are equivalent to each other.



16CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Lemma 2.1.5. Suppose χe is a product of iid variables in each component.
Then LWE(m,n, q, χs, χe) reduces to LWE(m− n, n, q, χe, χe).

Proof. We’re given (A, b = As + e), and we assume the first n rows of A
are invertible without loss of generality (we are free to permute A, and we
can make A have rank n with a reduction from the homework). Let A =
[AT

0 |AT
1 ]

T . This way we can write

b =

(
b0
b1

)
=

(
A0

A1

)
s+

(
e0
e1

)
. (2.2)

Notice then that

A1A
−1
0 b0 = A1(s+ A−1

0 e0) = A1s+ A1A
−1
0 e0 (2.3)

Which contains A1s, the first part of b1! So we subtract b1 from this:

b′ := A1A
−1
0 b0 − b1 = A1s+ A1A

−1
0 e0 − A1s− e1 = A1A

−1
0 e0 − e1 (2.4)

This looks like an LWE sample. Indeed, we can pass (A1A
−1
0 , b′) to the second

oracle. We see that A1A
−1
0 has dimensions (m− n)× n, and it is uniformly

random, and of course e0 and e1 are distributed according to χe.

It turns out we can also reverse this. This was something I worked out
with Romy Minko (we’re slightly surprised it does not appear in the literature
anywhere).

Lemma 2.1.6. Full-rank LWE(n, n, q, χs, χe) reduces to LWE(2n, n, q, U, χs×
χe).

Where “full-rank” means we restrict A to be full rank, and χs×χe means
we sample the first n components of the error from χs, and the remaining n
components from χe.

Proof. We will simply reverse the previous proof. We’re given (A, b = As+e).
Since A is full-rank, we can select random A0 as an invertible matrix and
let A1 be such that A = A1A

−1
0 . Then we will select a uniformly random

b1 ∈ Zn
q , and we will declare by fiat that b1 = A1s

′ + e for some s′ (more

concretely, s′ = A−1
1 (b1 − e); since b1 is uniformly random, so is s′).

For this s′ that we defined, we want to find A0s
′ + s. To do this, we

compute

b0 :=A−1(b− b1) (2.5)



2.1. LEARNING WITH ERRORS 17

=A−1(As+ e− A1s
′ − e) (2.6)

=A−1(As− A1s
′) (2.7)

=s− A−1A1s
′ (2.8)

=s− A0A
−1
1 A1s

′ (2.9)

=s− A0s
′ (2.10)

Thus, if we set A′ = (−AT
0 |AT

1 )
T , then we see that(

b0
b1

)
= A′s′ +

(
s
e

)
(2.11)

which fits the distribution of the second problem. We pass (A′, b′ = (bT0 , b
T
1 )

T )
to the oracle, which returns some s̃ satisfies A′s̃+ e′ ≡ b′ mod q for e′ from
χs × χe.

Here we do not even need uniqueness, actually. More precisely, we know
that b0 = −A0s̃+ e′0 and b1 = A1s̃+ e′1. This means that

Ab0 = A1A
−1
0 b0 = −A1s̃+ Ae′0 (2.12)

so
Ab0 + b1 = −A1s̃+ Ae′0 + A1s̃+ e′1 = Ae′0 + e′1 (2.13)

But critically, we constructed b0 = A−1(b − b1), so Ab0 + b1 = b. Thus,
b = Ae′0 + e′1, where e′0 is distributed as χs and e′1 is distributed as χe. This
is exactly what we needed.

2.1.5 Search and Decision

The search and decision versions of LWE reduce to each other. One direction
is easy; for the other:

Lemma 2.1.7. Search LWE(m,n, q, χs, χe) reduces to O(nq) calls to LWE(m,n, q, χs, χe).

Proof. Given a sample (A, b), we guess the first component of s: call it
s′1. Select a uniformly random vector v and add it to the first column of
A, and we also subtract vs′1 from b. Let A′ be the new matrix, so that
A = A′ + v(1, 0, . . . , 0). Then since b is an LWE sample, we have

b = As+ e = (A′ + v(1, 0, . . . , 0))s+ e = A′s− vs1 + e (2.14)



18CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Thus, (A′, b + vs′1) = (A′, A′s + e + v(s′1 − s1)). If we guessed incorrectly,
then the sample is uniformly random because v is uniformly random. If we
guessed correctly, the terms cancel out and this is just a valid LWE. Thus,
with only q guesses, we recover one component of s; after n repetitions of
this we have all of s.

Notice that this proof is not a polynomial time reduction if q itself is
superpolynomial. Is this a problem? Well, we argued that the problem
gets easier with large q, so this isn’t a big problem. In Kyber for example,
q = 3329.

2.1.6 LWE Encryption

We will describe a basic public key encryption method based on LWE. This
is not secure, never use it directly.

A public key encryption scheme consists of three algorithms:

• KeyGen()→ (PK,SK)

• Enc(PK,m)→ c

• Dec(SK, c)→ m

Intuitively, PK is the public key, SK is the secret key, m is a plaintext
message, and c is a ciphertext.

To make our LWE encryption, we have parameters (n, q, χs, χe, χ
′
s, χ

′
e, χ

′′
e).

For KeyGen(), we sample s from χs, e from χe, and uniformly random
A ∈ Zn×n

q . We let s be our private key and (A, b = As+e) be our public key.
For Enc(PK = (A, b),m), we make a “transposed” LWE sample by sam-

pling r from χ′
s, e

′ from χ′
e, and e′′ from χ′′

e , and make the ciphertext as
c = (c1, c2), where:

c1 = rTA+ e′T , c2 = rT b+ e′′ +m
⌊q
2

⌉
(2.15)

(it was pointed out that
⌊
q
2

⌉
is sort of pointless because q is an integer; we

could just take the floor, e.g. these choices don’t really matter, as we will
see).

For Dec(SK = s, c = (c1, c2)), we can basically think of rT b as a one-
time pad: since b should look uniformly random (by hardness of decisional



2.1. LEARNING WITH ERRORS 19

LWE), this should look uniformly random in Zq. But how to find rT b? Well,
consider that

rT b = rTAs+ rT e (2.16)

The first part we can figure out, almost, since c1s = (rTA+ e′T )s = rTAs+
e′T s. Thus, we’ll subtract c1s from c2 and see where that gets us:

c2−c1s = rTAs+rT e+e′′+m
⌊q
2

⌉
−rTAs−e′T s = rT e− e′T s+ e′′︸ ︷︷ ︸

(A)

+m
⌊q
2

⌉
.

(2.17)
We still need to get rid of (A). Actually, we won’t, really: the key fact is
that it’s small. At least, as long as all the error distributions produce small
vectors, by the triangle inequality and Cauchy-Schwarz inequality, all of (A)
is small.

Notice that c2 − c1s ∈ Zq, i.e., it’s a scalar. Thus, if (A) has absolute
value less than q

4
, the we can recover whether m = 0 or m = 1 by rounding

c2 − c1s to either 0 or
⌊
q
2

⌉
, whichever is closer. (If the error is larger than q

4
,

this fails!).

Unfortunately, this only allows us to send m ∈ {0, 1}, i.e., a single bit.
That’s technically enough for public key encryption, and in fact we can send
many ciphertexts from the same public key. But this scheme is big ! Notice
the sizes to send k bits:

• Public key: (n+ 1)n lg(q) bits

• Ciphertext: (n+ 1)k lg(q) bits

And the computations are also bad:

• Encrypt: O(kn2) (we must do k multiplications of an n-dimensional
vector against an n-dimensional matrix)

• Decrypt: O(kn) (we must do k inner products of ciphertexts with our
n-dimensional secret).

There are worse schemes, but there are also better schemes. Later we will
work on improving the efficiency.



20CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

2.2 Lattices

Why is LWE called lattice cryptography? What is a lattice? Our goal in
this section will be to explore this connection, but it will mainly be from an
attacker’s point of view. It turns out the best known way to attack LWE
deployed in practice is by solving lattice problems (by analogy, the best way
to attack good RSA schemes is by factoring). I will point out that there are
many other ways to attack LWE; there is good survey paper at [APS15].

Definition 2.2.1. A lattice is a set L(B) formed by a set B of m vectors in
Rn, which are all linearly independent, defined as:

L(B) =

{
m∑
i=1

aibi | ai ∈ Z, bi ∈ B

}
(2.18)

In other words, it’s like a vector space, but instead of arbitrary linear
combinations, we’re only allowed integer coefficients.

Another definition is a discrete additive subgroup of Rn. It’s compli-
cated why they’re equivalent: https://www.ams.jhu.edu/~abasu9/RFG/

lecture_notes.pdf.

2.2.1 Short Vectors

Because it is a discrete subgroup, there exists a shortest vector (possibly
non-unique). We can thus define:

λ1(L) := {length of the shortest non-zero vector in L}. (2.19)

This is hard to find!

Definition 2.2.2. γ-SVP: Given a lattice basis B, find a vector v in L(B)
such that |v| ≤ γλ1(L).

Why is this hard? If I’m given a basis B, why not just output the smallest
vector in B? Generally this will not be good.

Theorem 2.2.1 (Minkowski). λ1(L) ≤
√
n| det(B)|1/n

This holds for any B. In fact:

https://www.ams.jhu.edu/~abasu9/RFG/lecture_notes.pdf
https://www.ams.jhu.edu/~abasu9/RFG/lecture_notes.pdf


2.2. LATTICES 21

Proposition 2.2.1. If B and B′ are two bases of the same lattice L, then
| det(B)| = | det(B′)|.

Proof. Each vector in B′ can be written as an integer linear combination of
vectors in B. If we abuse notation and let B and B′ be matrices where the
vectors themselves are the columns, this means B′ = BU , where U is matrix
with integer coefficients.

But the same logic applies in reverse, since B′ also generates L. Thus,
B = B′V for a matrix V with integer coefficients. Substituting, we get that
B = BUV .

Since B and B′ have full-rank (we could project to their span if not),
det(B) ̸= 0, so 1 = det(U) det(V ), meaning det(U) = det(V )−1. But we
also know det(V ) ∈ Z, since it has integer entries, and there are only two
invertible integers: 1 and −1. Thus, det(B) = ± det(B′).

From this we can define Vol(L) = | det(B)| for any basis, and this is
well-defined.

Minkowski’s theorem is true for any lattice. And we can further define
the Hermite constant, γn, such that

λ1(L) ≤ γnVol(L)
1/n (2.20)

for any lattice L. But there are worst-case lattices out there, and we want to
do a little better, so there is something called the “Gaussian heuristic”: for
a random lattice L,

λ1(L) ≈
√

n

2πe
Vol(L)1/n. (2.21)

There are measures you can use for lattices to define a “random” lattice such
that this is asymptotically true.

There are many more variants of lattice problems! A big one which is
important is SIVP:

Definition 2.2.3. The ith successive minimum of a lattice L, denoted λi(L),
is

min {max{∥v∥ : v ∈ B} | B ⊆ L has i vectors which are LID over R}
(2.22)



22CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

SIVP asks us to find the set B. SIVP is a funny problem because λn(L)
can be shorter than the length of the shortest basis. The classic example is
the basis

{e1, e2, . . . , en−1,
1

2
(e1 + · · ·+ en)} (2.23)

Notice that en is in the lattice as well, so {e1, . . . , en} are linearly independent
and shorter than this basis (for n ≥ 5), but do not span the lattice.

2.2.2 Close Vectors

For any t ∈ Rn, it is well-defined to ask for ∥t−L∥, since there is a minimum
distance.

We can then define Bounded Distance Decoing:

Definition 2.2.4. Bounded Distance Decoding problem: Given β, a lattice
L, and a vector t ∈ Rn, with the promise that ∥t− L∥ ≤ β, find t.

Notice how this “morally” is identical to LWE. The main differences are
(a) the secret distribution; (b) doing things mod q.

2.2.3 Connection to LWE

There are two routes to connect LWE to lattices.
First, and what started LWE cryptography, was Regev’s reduction from

2005 from SVP to LWE. That is, if we can solve LWE in polynomial time,
then we can solve SVP in polynomial time. That’s not quite right, and
there’s some issues with the reduction:

• More precisely, his reduction was from LWE(m,n, q, χs, χe) where χe is
a discrete Gaussian distribution of variance σ2 and χs uniform, and
requires σ > 2

√
n. Then it solves SIVP for approximation factor

O(nq/σ). Often one assumes q = Ω(n), so this is a O(n3/2) approxi-
mation factor.

• In practice, we often choose σ = O(1). Then the reduction simply fails.

• The reduction is quantum. That means if we have an LWE solver (clas-
sical or quantum), it only gives us a quantum SIVP solver. Granted,
since this is post-quantum cryptography, we expect SIVP to hard for
quantum computers anyway.



2.2. LATTICES 23

• There are huge tightness losses in this reduction. What this means is
that if the runtime of our LWE solver is t(n), there is some function
R(n) such that we get a t(n)R(n)-time algorithm for SIVP. If we assume
that SIVP is hard, and would take some time T (n), then our LWE
runtime is bounded by T (n)/R(n). However, R(n) is so large that
this bound is meaningless in practice except for spectacularly large,
impractical n. A good paper to discuss this is [KSSS22].

The second route is to reduce LWE to SVP: we use an SVP solver to
attack LWE. The route will be something like Figure 2.1.

LWE schemesPrimal Attacks Dual Attacks

Search-LWE Decision-LWE

Tall
S-LWE

Kannan’s
Embedding

β-BDD
Bai-Galbraith
Embedding

Tall
D-LWE

SIS

Kannan’s
Embedding

Dual
Normal Form
Embedding

O(
√
q/σ)-SVP

Smaller, exact SVP

Enumeration Sieving

L
L
L
/B

K
Z

Figure 2.1: The route of reductions to attack LWE with lattice solvers.



24CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

We can see straightforwardly how search and decision LWE break lattice
schemes (though we’ll see more later), and we saw the reductions between
search and decision. We’ll continue from here.

Norms of Secret and Error

I will make a brief aside to bound the norms of s and e, as this will be helpful
for all the reductions. I’ll derive this just for e, though the same logic applies
to s.

We can see that

∥e∥2 = |e1|2 + · · ·+ |em|2 (2.24)

First, we will suppose s and e follow product distributions, meaning every
component is i.i.d. (independent and identically distributed). This means
we can define a random variable E which follows the distribution of |ei|2, and
we have that

∥e∥2 = E + · · ·+ E (2.25)

The sum of m i.i.d. random variables converges to a normal distribution by
the central limit theorem! So ∥e∥2 ∼ N(mµ,mV 2), where µ and V 2 are the
mean and variance of E. Two key facts:

1. We can assume E[ei] = 0, since we proved uncentered distributions are
equivalent to centered;

2. This gives us E[E] = E[|ei|2] = Var(ei) = σ2, where σ2 is the (component-
wise) variance of the original error distribution χe.

Thus, we end up with E[∥e∥2] = mσ2 and it is normally distributed. Now, it
is generally false that

√
E[X2] = E[X], but here we will assume that to be

roughly the case. You can find derivations online that show that this is close
to true for a normal distribution.

This means the expected value of ∥e∥ is approximately
√
mσ.

Finally we can “prove” a “lemma”:

Lemma 2.2.1. Suppose that χs = χe, and they have variance σ2. Then for

n→∞, LWE is “unique” iff σ < q
m

m+n√
2πe

.

Proof. This will be a pretty sketchy proof. Assume that χs is really χn
s , i.e.,

iid components. Then s21 + · · · + s2n converges to a Gaussian by the central



2.2. LATTICES 25

limit theorem, where each s2i has mean σ2, the variance of χs. Stealing re-
sults from here: https://stats.stackexchange.com/questions/241504/

central-limit-theorem-for-square-roots-of-sums-of-i-i-d-random-variables,

the expected value of ∥s∥ can be approximated by
√

nσ2 − V 2

4σ2 ≈ σ
√
n. An-

other way to see this is that Chebyshev’s inequality tells us that

Pr
(
|∥s∥2 − nσ2| ≥ α

)
≤ frac1nV 2α2 (2.26)

and since |s| is positive we can conclude that

Pr
(√

nσ2 − α ≤ ∥s∥ ≤
√
nσ2 + α

)
≤ 1

nV 2α2
(2.27)

so we’re darn close to σ
√
n.

We can define a lattice L(A) = {(x, y) : Ax ≡ y mod q}, which has a
basis (

In 0A qIm
)

(2.28)

and thus has determinant qm. We thus expect the shortest vector to have

norm approximately
√

m+n
2πe

q
m

m+n .

Now, if we have As+e = As′+e′ mod q, then A(s−s′) ≡ e′−e mod q.
That is (s − s′, e′ − e) ∈ L(A); however, this vector is short: it has norm
approximately

√
n+mσ by the above. Since we expect the shortest non-zero

to have norm at least
√

m+n
2πe

q
m

m+n , and thus we need σ ≈ q
m

m+n√
2πi

.

As an exercise, spot all the logical errors in the above. But it mostly
works out: non-unique LWE samples give a short vector in that lattice and
very short vectors probably do not exist in it.

2.2.4 Primal Attacks

Search LWE to BDD

To reduce tall LWE(m,n, q, χs, χe) to ∥e∥-BDD, we construct the lattice

LBDD(A) = {x ∈ Zm | ∃y : Ay ≡ x mod q} . (2.29)

Basically, take the image of A and shift it by q. We can write this as some-
thing like Im(A) + qZm.

https://stats.stackexchange.com/questions/241504/central-limit-theorem-for-square-roots-of-sums-of-i-i-d-random-variables
https://stats.stackexchange.com/questions/241504/central-limit-theorem-for-square-roots-of-sums-of-i-i-d-random-variables


26CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

It’s clear that As mod q is in this lattice, and this is close to b by distance
∥e∥, so that’s the reduction.

Can we reduce in reverse? Not really. The problem is that the LWE
lattice is quite special. First, it’s a q-ary lattice. A q-ary lattice is a lattice
L such that qZn ⊆ L.

Being q-ary is not that special:

Proposition 2.2.2. If L is an integer lattice, then it is vol(L)-ary.

Proof. To see this, recall that B−1 = 1
det(B)

adj(B), where the adjugate is a

matrix of determinants of submatrices of B. This means adj(B) is an integer
matrix, so

I =BB−1 (2.30)

=B
1

det(B)
adj(B) (2.31)

det(B)I =Badj(B) (2.32)

so det(B)I can be formed by integer combinations of vectors in B.

Notice that qZn is a q-ary lattice, but Vol(qZn) = qn. So there can
be quite a “gap” between these two bounds. In fact, the LWE lattice we
constructed above has determinant qm−n, approximately. We can show this
precisely:

For a matrix A, we can write a basis of LBDD(A) as(
qIm−n A1A

−1
0

0 In

)
(2.33)

where A = [A0;A1] for A0 full-rank in Zq. Most matrices B cannot be
transformed into this shape with only integer operations. And indeed, BDD
is a “worst-case” problem, whereas LWE is an average-case problem.

BDD to SVP

But, how do we then solve BDD? We can solve BDD with an approximate
SVP solver using Kannan’s embedding.

Lemma 2.2.2. Let B be a basis for a lattice L. BDD(L, β < λ1(L)√
2
) reduces

to 1-SVP.



2.2. LATTICES 27

Proof. We simply use Kannan’s embedding. Let µ = β. Suppose v is a
closest lattice point to t, so that ∥t− v∥ ≤ β, and v = Bw for some w. Then
let

B′ =

(
B −t
0 µ

)
(2.34)

and we see that B′(v, 1) = (v − t, µ). The norm of this is
√

µ2 + ∥v − t∥2 ≤√
2β2 =

√
2β < λ1(L).

Suppose v ∈ L(B′) has norm ∥v∥ = λ1(L(B
′)) ≤

√
2β, since we already

constructed a vector of norm
√
2β. Then v = (v′ − nt, nµ) for some v′ ∈ L

and n ∈ Z. If |n| ≥ 2, then ∥v∥ ≥ 2β > λ1(L); a contradiction. If n = 0,
∥v∥ = ∥v′∥ ≥ λ1(L) >

√
2β, another contradiction. Finally, if n = 1, any

vector shorter than
√
2β solves the BDD problem anyway.

To put that into the context of our LWE problem, the vector (e, 1) will
be in the lattice. Finding e is of course equivalent to breaking the scheme.

Proposition 2.2.3. The shortest vector in the Kannan embedding of a pri-

mal LWE attack has heuristic norm
√

m+1
2πe

q1−
n−1
m+1 .

Proof. Using Equation 2.33 and 2.34, this is an upper-triangular matrix so
the determinant is just the product of the diagonals, which is qm−nβ. Recall
that the Gaussian heuristic says that an m+ 1-dimensional lattice satisfies

λ1(L) ≈
√

m+ 1

2πe
Vol(L)1/(m+1) =

√
m+ 1

2πe
q

m−n
m+1 β

1
m+1 (2.35)

and that’s exactly what we need.

Here’s something odd, though: the vector (e, 1) is in the lattice, and
recalling our previous analysis, ∥e∥ ≈

√
mσ. Unless σ ≈ q1−n/m, this is much

shorter than expected!
There’s two approaches here, roughly: One is to argue that this is a

“unique-SVP” problem. That is, the second -shortest vector in the Kannan
embedding should approximately match the Gaussian heuristic. If it does,
then if we can solve γ-SVP for any γ ≤ λ2(L)

λ1(L)
, then this vector must be the

shortest vector (or an integer multiple of it).

In our case, we would have λ2(L) ≈
√

m+1
2πe

q1−
n−1
m+1 , and λ1(L) ≈

√
mσ.

Dividing these gives γ ≈ q1−
n
m

σ
.



28CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

The second approach (used in Kyber’s security analysis) is to use the
shortness of (e, 1) to give a more refined analysis of BKZ, which we will
discuss later. This is a more complicated analysis, so I will ignore it.

The analysis of this approximation factor and how it works is still a topic
of active research. Like a lot of topics in crypto, we treat this as fact based
mostly on experiments, rather than analysis. Why? Because if it works for
an attacker, it doesn’t matter if they can prove it!

The conclusion in either case is that we get an approximation factor which
increases in q and decreases in σ. This makes sense: larger approximation
factors in SVP are easier, and we should have that larger q is easier and
smaller σ is easier.

Bai-Galbraith Embedding

Kannan’s embedding gives us only a vector e such that b− e is in the span of
A, modulo q. But that only gives us s if s is uniform, i.e., this only attacks
“tall” LWE. We need a different reduction for normal form.

We can define a lattice L(A, e) = {(x, y, z) ∈ Zm+n+1 : Ay + x ≡ bz
mod q}. This has a basis:

B =

qIm A −b
0 In 0
0 0 1

 (2.36)

Notice that the vector (e, s, 1) is in this lattice. As long as χs and χe are
small, this vector is short.

We can apply the same logic as before. Since this is normal form, we
assume χs = χe, so

∥(e, s, 1)∥2 = ∥e∥2 + ∥s∥2 + 1 = mσ2 + nσ2 + 1 ≈ (m+ n)σ2. (2.37)

(if it’s normal form we also have m = n, which I will substitute later).

And we can also compute Vol(L(B)) = qm, while it’s dimension is m +
n+ 1.

We can again apply the Gaussian heuristic here as well:

λ1(L(B)) ≈
√

m+ n+ 1

2πe
(qm)

1
m+n+1 (2.38)



2.2. LATTICES 29

And so the ratio of the expected size of the shortest vector, to the actual
size, is approximately

q
m

m+n+1

σ
≈
√
q

σ
for normal form (2.39)

2.2.5 Dual Attacks

Tall decisional LWE to SIS

We will attack tall decisional-LWE by finding a short vector v such that
vTA ≡ 0 mod q. To see how this helps, suppose we’re given (A, b) as a
D-LWE problem. Once we find the short v, we compute vT b mod q. There
are two cases:

• If b is an LWE sample, then

vT b = vT (As+ e) = (vTA)s+ vT e ≡ vT e mod q (2.40)

Here we know both v and e are short, so by Cauchy-Schwarz, this inner
product is also short. Thus, vT b mod q will always be short if b is an
LWE sample.

• If b is uniformly random, then vT b is also uniformly random, which is
only short with a small probability.

Thus, we have a distinguisher. It’s not a great distinguisher because vT b
might just be small anyway. If b is LWE, it’s very unlikely to have vT b
large, so the chance of false negatives is extremely low, but false positives
are much higher. Most lattice solvers will actually give us multiple linearly
independent short v, and so we get a few samples to try.

Finding such short v ends up being the same as the SIS problem:

Problem 2.2.1 (Short Integer Solutions (SIS)). Given an integer matrix
A, a modulus q, and a bound β, find a non-zero integer vector x such that
∥x∥ ≤ β and Ax ≡ 0 mod q.

Solving SIS with AT gives us exactly the short vector v that we need to
attack D-LWE.



30CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

SIS to SVP

We can construct a lattice to solve SIS:

LSIS(A) := {v ∈ Zm | Av = 0 mod q} (2.41)

We can see (why?) that this is a lattice, and so a short vector in this lattice
solves SIS directly.

Why is this called a dual attack? First we define the dual lattice:

Definition 2.2.5. The dual of a lattice L ⊆ Rn is

L∨ := {v ∈ real span of L | ⟨v, w⟩ ⊆ Z,∀w ∈ L} (2.42)

If L has a full-rank basis then the real span of L is just Rn. In other cases
(say, if L has a basis that is taller than it is wide), we restrict to the span
of these vectors. A key fact is that the dual of an integer lattice will often
contain non-integer entries (as an exercise, what’s the dual of 2Zn?).

Recall that our lattice to reduce LWE to BDD was generated as

LBDD(A) = {v ∈ Rm : ∃x,Ax ≡ v mod q} (2.43)

The dual of this is not quite the same as LSIS(A). In fact, we want qLBDD(A)
∨.

Proposition 2.2.4. LSIS(A
T ) = qLBDD(A)

∨.

(note: qLBDD(A)
∨ ̸= (qLBDD(A))

∨; we take the dual, then multiply ev-
erything by q).

Proof. If v ∈ qLBDD(A)
∨, then v = qv′ for v′ ∈ LBDD(A)

∨, and so ⟨v′, w⟩ ∈ Z
for all w ∈ LBDD(A). This means ⟨qv′, w⟩ ∈ qZ, or ⟨qv′, w⟩ ≡ 0 mod q.
But w = Ax mod q, for some x, so we have that ⟨qv′, Ax⟩ ≡ 0 mod q,
or (qv′)TAx = vTAx ≡ 0 mod q. Since this holds for all x ∈ Zn

q , we can
conclude that vTA ≡ 0 mod q.

This is almost exactly the requirement that v ∈ LSIS(A
T ), except we

have not yet shown that v ∈ Zm. We know that qZm ⊆ LBDD(A). Thus,
suppose there is some component i of v′ which is a fraction r

s
. Then since

v′ ∈ LBDD(A)
∨, we must have that ⟨v′, qei⟩ = qr

s
∈ Z. This means vi = qv′i ∈

Z, for any i; thus, v = qv′ ∈ Zm.
For the reverse direction, if v ∈ LSIS(A

T ), then we can consider v′ =
1
q
v ∈ Qm, and take ⟨v′, w⟩ for any w ∈ LBDD(A). We know that w ≡ Ax



2.2. LATTICES 31

mod q, or w = Ax + qw′ for some w′. We also know that vTA ≡ 0 mod q,
or vTA = qv′′ for some v′′. Putting all this together:

⟨v′, w⟩ =1

q
⟨v, w⟩ (2.44)

=
1

q
⟨v,Ax+ qw′⟩ (2.45)

=
1

q
vTAx+ vTw′ (2.46)

=
1

q
(qv′′)Tx+ vTw′ (2.47)

=v′′Tx+ vTw′ ∈ Z (2.48)

Thus, v′ ∈ LBDD(A)
∨.

We then take a theorem:

Theorem 2.2.2. If B is a basis of a lattice L, then D = B(BTB)−1 is a
basis of the dual L∨.

Proof. Suppose v ∈ L(D), i.e., v = Dx for some x ∈ Zn. Then for any
w ∈ L, vTw = xDTw = xT (BTB)−1,TBTw. Since :

• w = By for some integer vector y,

• the inverse of the transpose is the transpose of the inverse;

• (BTB)T = BTB

then we get that

vTw = xT (BTB)−1(BTBy) = xTy ∈ Z (2.49)

Thus, L(D) ⊆ L∨.
Then let v ∈ L∨. We can see that BTv ∈ Zn by definition. Thus, we can

write:

v =BB−1(BT )−1BTv (2.50)

=B(BTB)−1BTv (2.51)

=DBTv (2.52)



32CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

∈D(Zn) (2.53)

∈L(D) (2.54)

Now, we want to get the shortest vector in the dual. We could laboriously
compute D = B(BTB)−1, but what’s a better way?

Given our expression, we can say:

Vol(L∨) = | det(D)| =
∣∣∣∣ det(B)

det(B)2

∣∣∣∣ = 1

| det(B)|
(2.55)

This allows us to easily compute

Vol(LSIS(A
T )) = Vol(qLBDD(A)

∨) = qmVol(LBDD(A)
∨) = qm

1

qm−n
= qn.

(2.56)
The dimension of LSIS(A

T ) is also m. This means by the Gaussian heuristic,
we expect our shortest vector to be√

m

2πe
q

n
m (2.57)

Quick sanity check: If m gets larger, then A is much taller. Thinking about
vTA ≡ 0 mod q, we have more choices of values of v to possibly make
this work, so we would expect smaller v. Indeed, that’s what the Gaussian
heuristic predicts.

I’m guessing at where to go from here, but I see no reason to expect a
shorter vector. This means that if we solve γ-SVP for LSIS(A

T ), we can
expect the size of vT b mod q, for an LWE sample, to be about

γλ1(LSIS(A
T ))∥e∥ ⪅ γmq

n
mσ. (2.58)

We want this to be noticeably less than q/2, the expected value of vT b mod q
for uniformly random b. Rearranging we get

γ ⪅
q1−

n
m

mσ
(2.59)

Were it not for the factor ofm, this is basically the same as the primal attack.
Perhaps there is some good reason to remove the factor of m, but I don’t
know it.



2.2. LATTICES 33

Normal LWE to SVP

The above only works for tall LWE. In fact if we define LSIS(A
T ) for full-

rank n×n A, the lattice is just qZn, which is useless to us. Thus, we instead
define:

L∨
normal(A) =

{
(x, y) ∈ Zm+n | ATx ≡ yT mod q

}
(2.60)

The shortest vector in this will solve D-LWE as well, with the same technique:
Given a short vector (v, w), we just compute vT b. This is still uniformly
random for uniformly random b, but for LWE:

vT b ≡vT (As+ e) (2.61)

≡(vTA)s+ vT e (2.62)

≡wT s+ vT e mod q (2.63)

and both of these are small as well, since all of v, w, s, e are small.
We already analyzed a similar lattice to this, and we found it has a basis

of (
Im 0
AT qn

)
(2.64)

which has determinant qn and dimension m + n, and so we could apply the
same Gaussian heuristic to find an approximation factor, but I will leave this
out.

2.2.6 Lattice Basis Reduction

Having reduced LWE to approximate SVP problems, we want to approxi-
mately solve SVP. To do this we will use the Block-Korkine-Zolotarev (BKZ)
algorithm, but we will warm up with 2 problems first. This section follows
Galbraith’s lattice chapter very closely.

Two-Dimensional Lattices

Suppose we have a two-dimensional lattice L, with a basis B = {b1, b2}. It’s
easy to find a shorter basis as follows: set b′1 = b1−kb2, where k is an integer
such that ∥b′1∥ is minimized. This is dead easy to find, since we know that
∥b1 − kb2∥2 = ⟨b1 − kb2, b1 − kb2⟩ = ∥b1∥2 − 2k⟨b1, b2⟩+ k2∥b2∥2. This is easy
to optimize (if k were continuous), at

k =
⟨b1, b2⟩
∥b2∥2

. (2.65)



34CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

The norm of b′1 is symmetric about this minimum, so we can simply round
the value above to get the minimum integer value

This gives us the Lagrange-Gauss basis reduction technique: while k ̸= 0,
repeat the above process, swapping b1 and b2 after each iteration.

You can argue that this must terminate, and when it does, we have the
shortest possible basis.

Proposition 2.2.5. When the Lagrange-Gauss basis reduction terminates,
we have the shortest possible basis: for any v ∈ L, ∥v∥ ≥ max{∥b1∥, ∥b2∥}.

Proof. Assume without loss of generality that ∥b2∥ ≤ ∥b1∥. Let v ∈ L, so
that v = a1b1 + a2b2 for non-zero integers a1 and a2 (otherwise we just have
the basis vectors!). We can assume a1 and a2 are co-prime (exercise: why?),
and so we can just divide a2 by a1 and write a2 = qa1 + r for 1 ≤ r < q
(r ≥ 1 because they are co-prime).

Then we just fiddle a bit with the arithmetic:

v = a1b1 + (qa1 + r)b2 = a1(b1 + qb1) + rb2 (2.66)

and use the reverse triangle inequality:

∥v∥ ≥ |a1|∥b1 + qb2∥ − r∥b2∥ (2.67)

and then we just pop a factor of r out of the first term:

∥v∥ ≥ (|a1| − r) ∥b1 + qb2∥︸ ︷︷ ︸
(A)

+r(∥b1 + qb2∥ − ∥b2∥︸ ︷︷ ︸
(B)

) (2.68)

But we know that ∥b1+qb2∥ ≥ ∥b1∥, or else we would not have terminated our
reduction, and this means that (B) is non-negative. Since we also assumed
∥b1∥ ≥ ∥b2∥, this means that (A) is at least as large as ∥b1∥. Finally, we
know that |a1| − r ≥ 1, by definition of the remainder. This gives

∥v∥ ≥ ∥b1∥ (2.69)

Two key ideas we will take from this simple case:

• the choice of the value of k to minimize the norm;



2.2. LATTICES 35

• the notion of swapping and reducing to make shorter vectors.

We could attempt to generalize this algorithm to an n-dimensional lattice
by simply reducing all pairs of lattice vectors in this way. But there’s no
guarantee this terminates in polynomial time, and I do not see a proof that
even if it terminates that we will have a short basis.

Gram-Schmidt Orthogonalization

We will recall the Gram-Schmidt orthogonalization from intro linear algebra.
The procedure works as follows:

1. For i from 1 to n:

(a) Set b∗i = bi

(b) For j from 1 to i− 1:

i. Set b∗j = b∗j −
⟨b∗j ,b∗i ⟩
⟨b∗i ,b∗i ⟩

b∗i

A few fun facts about this:

1. The Gram-Schmidt (GS) basis B∗ is deterministically created from the
original basis B. Thus, an ordered lattice basis B defines a GS basis, so
we will treat the properties of the GS basis as properties of the lattice
basis B.

2. Given a basis B, this gives us a basis B∗ = V B which is orthogonal.
Notice that we did not normalize! We only want an orthogonal basis;
the lengths of the basis are important information. It will also be more
convenient to write B = B∗U , and then U is an upper triangular matrix
with 1s on the diagonal.

3. We can also write

b∗i = bi −
i−1∑
j=1

⟨bi, b∗j⟩
⟨b∗j , b∗j⟩

b∗j (2.70)

4. The coefficients in that last equation are quite important, so we give
them their own notation:

µij :=
⟨bj, b∗i ⟩
⟨b∗i , b∗i ⟩

. (2.71)

These will be the upper elements in the matrix U such that B = B∗U .



36CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

5. The very first GS vector b∗1 wasn’t modified, so b∗1 = b1 is a lattice
vector.

6. We have that
⟨b∗i , bi⟩ = ∥b∗i ∥2 (2.72)

which one can see readily from the equation in item 3.

7. Since B = B∗U , we have det(B) = det(B∗) det(U), but det(U) = 1 (it
is upper-triangular with 1s on the diagonal, so | det(B∗)| = | det(B)| =
Vol(L). You can use the vectors of B∗ to diagonalize it, and the diag-
onal will be the norms of each vector, and so | det(B∗)| =

∏n
i=1 ∥b∗i ∥.

This leads to a very important equation:

Vol(L) =
n∏

i=1

∥b∗i ∥. (2.73)

8. It will also be convenient to define projection operators πi which project
a vector away from the space spanned by {b1, . . . , bi−1}. We can give
an explicit formula:

πi(v) = v −
i−1∑
j=1

⟨v, b∗j⟩
∥b∗j∥

b∗j (2.74)

and this immediately tells us that b∗i = πi(bi).

The LLL Algorithm

Size-Reduction Notice that µ12 is exactly what we computed to solve
SVP in two dimensions. Moreoever, the algorithm terminates when we the
minimum of ∥b1+kb2∥ is at k = 0, which would mean ⌊µ12⌉ = 0, or |µ12| ≤ 1

2
.

We can make that more general:

Definition 2.2.6 (Size-Reduced). A basis B is size-reduced if |µij| ≤ 1
2
for

all i ̸= j.

Basically, we’re generalizing our two-dimensional SVP solver: for each
pair i, j, we set bj ← bj + kbi to minimize its norm, but only for j > i. After
this we could swap vectors and try again, but that raises a tricky question
about which vectors to swap. We will solve that later, but for now let’s
satisfy the size-reduced condition.



2.2. LATTICES 37

Lemma 2.2.3. Given a basis B, construct B′ from B by setting b′j = bj −
⌊µij⌉ bi for some i, j with i < j. Then |µ′

ij| ≤ 1
2
and µ′

kℓ = µkℓ for all
(k, ℓ) ̸= (i, j) unless ℓ = j and k < i.

Proof. First notice that b∗
′

k = b∗k for all k ̸= j: this is clearly true for k < j
because none of the first j − 1 vectors change. For k > j, we can see that
the span of the first k − 1 vectors is the same in B′, since we only changed
bj by added a basis vector already in this span, so projecting away from this
span (which is what the GS orthogonalization does) will not change.

We also see that b∗
′

j = b∗j , since we project b
′
j by the span of the first j−1

vectors, which projects away the new bi direction added.
Then recall that

µij =
⟨bj, bi∗⟩
∥b∗i ∥2

(2.75)

Because b∗k and bℓ are unchanged for k, ℓ ̸= j, the only µkℓ which might be
different are with k = j or ℓ = j.

We can already see that µ′
jk = µjk because b∗

′
j = b∗j .

Then consider µ′
kj for k > i. We know that b∗k is orthogonal to bi, so

⟨b′j, b∗k⟩ = ⟨bj, b∗k⟩ and thus µ′
kj = µkj.

Finally,

µ′
ij =
⟨bj − ⌊µij⌉ bi, bi∗⟩

∥b∗i ∥2
(2.76)

=
⟨bj, bi∗⟩
∥b∗i ∥2

− ⌊µij⌉
⟨bi, bi∗⟩
∥b∗i ∥2︸ ︷︷ ︸

=1 (by GS fact 6)

(2.77)

=µij − ⌊µij⌉ (2.78)

which must be in [−1/2, 1/2].

This Lemma gives us an immediate algorithm to size-reduce a basis:

1. For j = n down to 1:

(a) For i = j − 1 down to 1:

i. Set bj = bj − ⌊µij⌉ bi

which is only O(n2) time.



38CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

The Lovasz Condition GS Fact 7 is quite interesting because the product
of norms of the GS vectors is an invariant of the lattice. But since b∗1 = b1 is
in the lattice, that means if we increase the norms of all other GS vectors,
then the norm of b1 must decrease. This will be the secret of all lattice basis
reduction.

If we try orthogonalizing some random vectors, what you’ll find is that
the later vectors get quite a bit smaller. As intuition, the first n− 1 vectors
will span an n− 1-dimensional subspace of Rn, so choosing a random vector
for bn will have only very little of the vector in the last, unspanned dimension;
thus, once we project away from the first n− 1 vectors, there won’t be much
left.

We can draw a little graph of this situation:

log(∥b∗i ∥)

Index i →

log(Vol(L))

log(∥b1|)

Since we’ve taken the log of the norms, then the area under this curve is
the sum of the logs, which is the log of the product, which is precisely the log
of Vol(L)! That is, if we plot any basis like this, the area under this curve
is conserved. This means if the basis slopes down quickly, it means log(∥b1|)
(the first vector) must be large, and conversely, if it slopes down slowly, we



2.2. LATTICES 39

have a good basis and ∥b1∥ will be smaller.
We can quantify this a bit more precisely: if we want the slope above

some value a, this means that

log(∥b∗i ∥) ≤ log(∥b∗i+1∥) + a (2.79)

or,
∥b∗i ∥ ≤ α∥b∗i+1∥ (2.80)

for some α. This is often expressed as:

Definition 2.2.7 (Lovasz Condition). A lattice basis satisfies the Lovasz
condition for δ ∈ [0, 1) if

δ∥b∗i ∥ ≤ ∥b∗i+1∥2 + |µi,i+1|2∥b∗i ∥2 (2.81)

for all i from 1 to n− 1.

(other definitions define this only for a specific index i).
This doesn’t quite fit the above, but if you recall that for a size-reduced

basis we have |µi,i+1|2 ≤ 1
4
, we can rearrange the equation to get ∥b∗i ∥ ≤

α∥b∗i+1∥2 for α = 1
δ− 1

4

If we satisfy this property, then we can chain these inequalities together
to get

∥b1∥ = ∥b∗1∥ ≤ α∥b∗2∥ ≤ · · · ≤ αn−1∥b∗n∥ (2.82)

Here we use the fact that ∥b∗n∥ ≤ λ1(L). Thus,

∥b1∥ ≤ αn−1λ1(L). (2.83)

Great! We’ve solved αn−1-SVP. This looks exponentially bad, and it is, but
that’s still better than nothing.

How do we ensure we satisfy this condition? Recall the projection oper-
ations (GS Fact 8):

Lemma 2.2.4. If a size-reduced basis B satisfies ∥πi(bi)∥ ≤ ∥πi(bi+1)∥, then
it satisfies the Lovasz condition at index i for any α ≥

√
4
3
.

Proof. Recall that πi(bi) = b∗i , though πi(bi+1) ̸= b∗i+1. Instead,

b∗i+1 = πi(bi+1)− µi,i+1b
∗
i (2.84)



40CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

(that is, project away from the first i − 1 basis vectors, then the ith basis
vector).

We then take the inner product with πi(bi+1). The same logic as GS Fact
6 shows that

⟨b∗i+1, πi(bi+1)⟩ = ∥b∗i+1∥2 (2.85)

(or by rearranging Equation 2.84 and taking the inner product with b∗i+1).
And we also have that

⟨b∗i , πi(bi+1)⟩ = ⟨b∗i , bi+1)⟩ = µi,i+1∥b∗i ∥2 (2.86)

by similar reasoning. This means

∥b∗i+1|2 =∥πi(bi+1)∥2 − µ2
i,i+1∥b∗i ∥2 (2.87)

≥∥b∗i ∥2 − µ2
i,i+1∥b∗i ∥2 (2.88)

=∥b∗i ∥2(1− µ2
i,i+1) (2.89)

≥∥b∗i ∥2
3

4
(2.90)

with the last step because the basis is size-reduced.

This last lemma suggests that once we size-reduce, if we find an index
that does not satisfy the Lovasz condition, we should just swap it with its
successor, and then necessarily it will satisfy the Lovasz condition: since this
will not change πi, then ∥πi(bi)∥ ≤ ∥πi(bi+1)∥ in the new basis.

This works, but not quite for that reason. Unfortunately, we might have
spoiled the Lovasz condition between i and i − 1, or i + 1 and i + 2. The
full proof that LLL works is more complicated, but the above just gave some
intuition.

Here is LLL, more or less:

1. While the Lovasz condition does not hold:

(a) Size-Reduce B

(b) Swap bi and bi+1 at the first index i that does not satisfy the
Lovasz condition.

Of course we can be much more efficient and do the same things (if we just
swap bi and bi+1, there’s actually not much we need to change to keep it
size-reduced), but this is sufficient.



2.2. LATTICES 41

Theorem 2.2.3. LLL runs in time polynomial in n for δ ≤ 3
4
(equivalently,

α ≥
√
2).

Again, the proof is actually quite complicated.

Theorem 2.2.4. LLL solves 2
n−1
2 -SVP in polynomial time.

Proof. As we saw before, if the Lovasz condition holds, then ∥b1∥ ≤ αn−1λ1(L),
and since we can do α =

√
2, the result follows.

Again, LLL’s approximation factor seems kind of trivial, but it is supris-
ingly insightful and powerful. It is enough for Coppersmith’s lattice-based
attacks on RSA, for example.

The BKZ Algorithm

If you consider LLL, between the size-reduction and swapping, we’re basically
solving a 2-dimensional shortest vector problem for bi and bi+1. Not exactly:
we’re solving it for πi(bi) and πi(bi+1). BKZ asks: what if we did more
than a 2-dimensional shortest vector problem? That is, what if we had an
oracle that could solve β-dimensional SVP exactly, could we use it solve
approximate SVP for a better approximation factor?

That’s what it does, more or less. We will define two things to make it
work:

Li := L({πi(bi), πi(bi+1), . . . , πi(bi+β−1)}) (2.91)

That is, Li is the lattice generated by the projections of the next β vectors
after i− 1.

Given any vector v ∈ Li, we can lift it to a vector in L as follows: We
know that

v =

i+β−1∑
j=i

aiπi(bj) (2.92)

for ai ∈ Z, so we can just make

lift(v) =

i+β−1∑
j=i

aibj. (2.93)

By linearity of the projection operator, we have that πi(lift(v) = v.
This gives us BKZ. In short, we solve SVP exactly in blocks of size β,

and lift the results into the original basis.



42CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

1. Repeat:

(a) For i = 1 to n:

i. Find b′i, the lift of a shortest vector in Li

ii. If b′i ̸= bi, then:

A. Add the lift of the shortest vector in Li to B

B. Use LLL to reduce B from n+ 1 to n vectors again

C. Restart the main loop

A nice fact about LLL is that if you give it extra vectors (so, more than a
basis of the lattice) it will output a basis. I have no idea how to prove this
fact.

I also do not know how to prove that BKZ terminates, though I think
this is more of an area of active research. Heuristically, it takes O(n

2

β2 ) loops.
What we can prove is that it produces a reasonably good approximation.

Recall that πi(bi) = b∗i . When BKZ terminates, we know that bi is the lift of
a shortest vector in Li, which means that b∗i = πi(bi) is a shortest vector in
Li. This means that

∥b∗i ∥ ≤ γβVol(Li)
1/β = γβ

(
i+β−1∏
j=i

∥b∗j∥

)1/β

(2.94)

where the last equation uses the fact that orthogonalizing {πi(bi), . . . , πi(bi+β−1)}
will just give you the original GS vectors b∗i to b∗i+β−1.

This tells us that we have a bound for ∥b∗i ∥ which almost the geometric
average of the next β vectors. As β gets larger, this will make it a tighter
bound.

We need a quick lemma for this theorem. It’s not that important but it
can give some flavour of lattice geometry.

Lemma 2.2.5. The Hermite constants γn satisfy γn
n ≤ γm

m for n ≤ m.

Proof. The Hermite constants are defined to be the minimum values γn such
that for any lattice L in n dimensions,

λ1(L) ≤ γnVol(L)
1/n. (2.95)

Thus, there should be some lattice L such that there the shortest vector
v ∈ L satisfies

v = γnVol(L)
1/n. (2.96)



2.2. LATTICES 43

Let B be a basis of L. We construct a new lattice L′ with basis

B′ =

(
B 0
0 γnVol(L)

1/n

)
(2.97)

L′ has v as its shortest vector, or (0, γnVol(L)
1/n) (any other vector would

imply a shorter vector in L). However,

Vol(L′) = | det(B)|γnVol(L)1/n = Vol(L)
n+1
n γn (2.98)

By definition of γn+1, we have that

∥v∥ = λ1(L
′) ≤ γn+1Vol(L

′)
1

n+1 (2.99)

which we can rearrange to give

γnVol(L)
1
n ≤ γn+1Vol(L)

1
nγ

1
n+1
n (2.100)

and this gives the result for m = n+ 1. Induction finishes the result.

Theorem 2.2.5. When BKZ terminates (i.e., bi is the lift of a shortest
vector in Li for all i ∈ [1, n− β + 1]), the first vector b1 satisfies

∥b1∥ ≤ γ
n−1
β−1

β λ1(L). (2.101)

Proof. The bound we ust saw is easier to work with in this form:

∥b∗i ∥β ≤ γβ
β

i+β−1∏
j=i

∥b∗j∥; (2.102)

Suppose we compute
n∏

i=1

∥b∗i ∥β (2.103)

then our bound above gives us

n∏
i=1

∥b∗i ∥β ≤ γ
(n−β+1)β
β

(
β−1∏
i=1

∥b∗i ∥i
)(

n−β∏
i=β

∥b∗i ∥β
)(

n∏
i=n−β

∥b∗i ∥n+1−i

)
(2.104)

This is sort of like a convolution: it’s like we’re multiplying together all these
geometric averages, so they flatten out in the middle but trail off at the edges.



44CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

If we cancel out a bunch of terms in the equation above, we’re left with

k∏
i=1

∥b∗i ∥β−i ≤ γ
(n−β−1)β

2
β

n∏
i=n−β

∥b∗i ∥n+1−i (2.105)

We want to bound b∗1.
Notice that if we BKZ-reduced the first block for β, we also BKZ-reduced

it for β − 1, β − 2, down to 2. Normally removing basis vectors can make
the shortest vector larger, but in this case the shortest vector is already in
the basis (πi(bi) is the shortest vector), so it will still be shortest if we have
fewer other basis vectors.

Thus, we also have that

∥b∗1∥i ≤
√
γi

i
i∏

j=1

∥b∗j∥ (2.106)

From Lemma 2.2.5, γi
i ≤ γβ

β if i ≤ β, and then we can add in more bounds
for the first β terms, i.e.,

k∏
i=1

∥bi∥i ≤
β∏

i=1

√
γi
i

i∏
j=1

∥b∗j∥ (2.107)

∥bi∥
β(β−1)

2 ≤γ
β(β−1)

2
β

β∏
j=1

∥b∗j∥β−i (2.108)

The right-hand side is basically just the left-hand side of Equation 2.105, so
we can substitute and combine these to give

∥b1∥
β(β−1)

2 γ
−β(β−1)

2
β ≤ γ

(n−β+1)β
2

k

n∏
i=n−β

∥b∗i ∥n+1−i (2.109)

and we can move all γβ terms to the right:

∥b1∥
β(β−1)

2 ≤ γ
(n−1)β

2
β

n∏
i=n−β

∥b∗i ∥n+1−i (2.110)

That last piece is annoying. Let’s upper bound it by ∥b∗max∥ := maxni=n−β{∥b∗i ∥}.
This gives us

∥b1∥
β(β−1)

2 ≤ γ
(n−1)β

2
β ∥b∗max∥

β(β−1)
2 (2.111)



2.2. LATTICES 45

or, taking β(β − 1)/2th roots,

∥b1∥ ≤ γ
n−1
β−1

β ∥bmax∥ (2.112)

Our final step is to compare to λ1. We argue that ∥bmax∥ ≥ λ1. Let v be a
shortest vector in the lattice. Generally, πi(v) won’t be the shortest vector in
Li, because πi(v) will not actually be in the lattice Li. The reason is because
v likely has some non-zero components in vectors outside of Li (i.e., basis
vectors past i + β − 1). However, for i ≥ n − β + 1, we actually do have
that πi(v) ∈ Li, because all the remaining GS basis vectors are in the lattice!
Thus, since we ran BKZ, we are guaranteed that b∗n−β is the shortest vector
in Ln−β, so ∥πn−β(v)∥ ≥ ∥b∗n−β∥, and we can assume ∥b∗i ∥ decreases in i.

We also have, by definition of projections, that ∥πb−β(v)∥ ≤ ∥v∥ = λ1(L),
which tells us

∥b1∥ ≤ γ
n−1
β−1

β ∥bmax∥ ≤≤ γ
n−1
β−1

β λ1(L). (2.113)

This is a nice result because if we take β = 2, we recover (more or less)
LLL. If we take β = cn for c < 1, we get an approximation of

γ
n−1
cn−1
cn ≤

√
cn

n−1
cn−1 ≤ (cn)

1
c (2.114)

which is polynomial in n. In fact we can get O(n) approximation with c = 1
2
.

There are better analyses that give a tighter approximation factor, but
many rely on heuristics and experimental findings.

Putting this together gives us a nice trade-off between the approxima-
tion factor we want and the difficulty, because if we have larger β, then the
problem is definitely harder. We’ll shortly see that the best known run-time
for exact SVP is exponential in the dimension, so the runtime of BKZ is
exponential in β. This gives us:

• β = O(1), polynomial runtime but exponential approximation factor;

• β subexponential: subexponential runtime and subexponential approx-
imation factor;

• β = cn: exponential runtime but polynomial approximation factor.

The proof doesn’t give us a constant approximation factor at any pa-
rameter, but of course if we take β = n then, by definition, we solve SVP
exactly.



46CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

2.2.7 SVP Solvers

We will finally give algorithms that solve SVP. There are two classes: enu-
meration and sieving. Enumeration is superexponential but uses polynomial
space, while sieving is exponential in both time and space.

Enumeration

What is your first though on how to find short vectors? Try all small com-
binations of the basis? Yes!

Here’s a natural idea: pick some bound C. Try all coefficients from −C
to C. If it doesn’t work, increase C. As a rough sketch of the algorithm:

1. C = 0

2. While the shortest vector so far is too big:

(a) For all (a1, . . . , an) ∈ [−C,C]n:

i. Check if a1b1 + · · ·+ anbn is sufficiently small

(b) Increment C

If you are good at algorithm design, you will hate the algorithm above,
because there are so many easy ways to make it faster. But please forget
such concerns for now: this is a huge asymptotic algorithm, so any small
optimization is premature.

Runtime Analysis: Our first goal will be to bound the runtime, and in-
cidentally this will also give us an okay “pruning” approach. Bounding the
runtime asks: what is the minimum C where this “catches” the shortest
vector?

Using the original lattice basis will be hard because the vectors are non-
orthogonal, so we might use a large multiple of b1, only to cancel out most
of it with a combination of the rest of the basis vectors. Instead, we use the
Gram-Schmidt orthogonalization.

That is, let v =
∑n

i=1 xibi be a shortest vector. We can re-write this in
the Gram-Schmidt basis:

v =
n∑

i=1

xibi (2.115)



2.2. LATTICES 47

=
n∑

i=1

xi

(
b∗i +

i−1∑
j=1

µijb
∗
j

)
(2.116)

=
n∑

i=1

b∗i

(
xi +

n∑
j=i+1

xjµji

)
︸ ︷︷ ︸

:=zi

(2.117)

This is very nice because the b∗i are orthogonal, so we get

∥v∥2 =
n∑

i=1

z2i V ertb∗i ∥2 ≤ A (2.118)

for some bound A.
As a quick aside: what should the bound A be? If we truly seek to solve

exact-SVP, then we want A = λ1(L). Unfortunately, deciding on the value
of λ1(L) is NP-hard as well (exercise). We could take the Minkowski bound,
A = (

√
nVol(L)1/n)2, then we know that ∥v∥2 ≤ A. But actually, if you

look at our derivation for the approximation factor of BKZ, if we set A =
(CnVol(L)

1/n)2 for some constant Cn, then BKZ gives us an approximation

factor of C
n−1
β−1

β . This means that we technically don’t need to solve “exact”-
SVP, just something fairly close.

Anyway: Let Bi := ∥b∗i ∥2 for convenience. Then we can easily cut off the
sum at any i and obtain

z2i ≤
A

Bi

− 1

Bi

n∑
j=i+1

Bjz
2
j (2.119)

Since zn = xn, this tells us that xn ≤
√

A
Bn

. Great, that’s already a bound

on the last coefficient!
Then we take the second coefficient, and see that

(xn−1 + xnµn,n−1)
2 ≤ A− x2

nBn

Bn−1

(2.120)

and then we can rearrange this to

−A− x2
nBn

Bn−1

− xnµn,n−1 ≤ xn−1 ≤
A− x2

nBn

Bn−1

− xnµn,n−1 (2.121)



48CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

So once we select xn, we get slightly tighter bounds for xn−1.
Generally, if we write

Mi =

√√√√(A− n∑
j=i+1

x2
jBj

)
/Bi (2.122)

and

Ni =
n∑

j=i+1

µj,ixj (2.123)

then we have
−Mi −Ni ≤ x ≤Mi −Ni (2.124)

This means our runtime is more-or-less

O

(
n∏

i=1

(2Mi + 1)

)
. (2.125)

Right? No: the Mi are dependent on previous values of xj! But we can

bound Mi ≤
√

A/Bi, which holds regardless of our previous selections, and
that gives us a bound of

O

(
n∏

i=1

(2
√

A/Bi + 1)

)
=Õ

(
2nA

n
2√∏n

i=1Bi

)
(2.126)

=Õ

(
2nA

n
2∏n

i=1 |b∗i |

)
(2.127)

=Õ

(
2nA

n
2

Vol(L)

)
(2.128)

(2.129)

recalling our definition of Bi. Now, if we substitute A = (cn
√
nVol(L)1/n)2

(where cn is some sort of approximation factor), we get a bound on the
run-time of

O

(
2ncnnn

n
2Vol(L)

Vol(L)

)
(2.130)

=O
(
2n+lg(cn)+

1
2
n lgn

)
(2.131)

This is super -exponential.



2.2. LATTICES 49

Improvements: Surprisingly, we’re not too far off from the best known:

2
1
8
n lgn+o(n lgn). (2.132)

If you look at our search, it makes the most sense as a depth-first search.
As we choose values for xn, xn−1, etc., that shrinks our bounds for earlier
coefficients. Thus, our final search space can be quite a bit smaller, though
unfortunately not really enough to make a big dent in the asymptotics.

The best known algorithms are heuristic, and use “pruning” to cut off
branches in this depth-first search that will probably be useless.

A super-exponential algorithm looks quite bad. In fact it looks works than
just brute-forcing the error/secret for a bounded error distribution. However,
bear in mind that we’re only doing this as a subroutine of BKZ, so the lattice
dimension here is some β < n.

We could take our BKZ block-size to be β = O(n/ lg n) so that enumera-
tion is “only” exponential in the original lattice dimension, but that only gives
us an approximation factor of 2O(log2 n), which is super-polynomial. Hard to
say if this is actually a good idea, given that if we’re breaking LWE, we can
brute-force a secret with entries bounded in B in only O((2B + 1)n) time.

Given all of this, why do we still care about enumeration? Because it
only needs polynomial space.

2.2.8 Sieving

Sieving starts from a very simple observation: a lattice is, by definition,
closed under addition and subtraction. That means if I generate two lattice
vectors v and w which are close to each other, then v − w is also a lattice
vector, which is short.

The second simple observation is that if I generate a lot of lattice vectors,
they will have a roughly bounded size, and thus they are all within some n-
dimensional hyperball. The volume of this ball is finite (albeit exponential),
so if I generate enough vectors, at least two of them must be close to each
other.

Thus, the following simple algorithm should work:

1. Generate (somehow) a list L0 of random lattice vectors

2. For i = 0 upwards:

(a) Li+1 = ∅



50CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

(b) For all pairs (v, w) ∈ L2
i :

i. If ∥v − w∥ ≤ γ∥v∥, insert v − w into Li+1

Which leaves us a few questions to answer:

1. how do we generate L0?

2. how many iterations will this take?

3. how large should the parameter γ be?

4. how large should L0 be?

5. how long will this take?

Generating L0: I will gloss over this because it’s relatively easy. One way
is to sample random real vectors on the surface of a large ball and compute
a close lattice vector. Of course, finding a close lattice vector is hard, so we
can just choose the size large enough that we can do reasonably well at this
task. We don’t have time in this course to cover Babai’s algorithm, but it is
a ubiquitous algorithm that solves approximate CVP, with an approximation
factor depending on the quality of the basis.

I can’t readily find a specific number on the length of these initial vectors,
but I will roughly assume they are of the order of n∥b1∥, where ∥b1| is the
initial basis vector. Presumably we have already run LLL on this lattice, so
we know ∥b1∥ ≤ 2

n−1
2 λ1(L), so we have a bound on our initial lattice vector

lengths.
A key fact that will come up later is that the lattice vectors will all have

approximately the same length, because we generated them close to real
vectors of the same length.

Number of iterations: To solve the number of iterations, we use a heuris-
tic: that all of the vectors in a list Li have approximately the same length,
and that length will be γ times the length of vectors in Li−1.

Why should this hold? We assume that if v is close to w (so ∥v − w∥ ≤
γ∥v∥, then v is uniformly randomly distributed in the n-dimensional hyber-
ball of radius γ∥v∥ centered at w (if v was uniformly distributed to begin with,
this is true). However, the volume of a hyperball of radius r is proportional
to rn; this means that the vast majority of the volume of a high-dimensional



2.2. LATTICES 51

hyperball is concentrated on the surface of the ball. Thus, with very high
probability, such uniformly distributed b will be on the surface of the ball,
meaning ∥v − w∥ ≈ γ∥v∥.

This means that if all vectors in Li have length ℓi, we would expect all
vectors in Li+1 to have length approximately γℓi.

Putting this together, after k iterations, the lengths ought to be:

ℓk ≈ γkℓ0 ≤ γkn2
n−1
2 λ1(L) (2.133)

And we want ℓk ≈ λ1(L), because then we have the shortest vector. This
gives us

λ1(L) ≲ γkn2
n−1
2 λ1(L) (2.134)

or

k ≳ log1/γ(n2
n−1
2 ) = O(

n

log(1/γ)
) (2.135)

Linear in n! Nice!

Setting γ: It turns out that the cost will grow severely if γ is small, so we
take γ ≈ 1. For example, if we take γ = 1− 1/n, then

log(1/γ) ≈ 1

n
(2.136)

so we can take k = O(n2) (being very sloppy with the asymptotics).
All this is to justify the choices in practice: first, we don’t generally worry

about the number of iterations (there are more sophisticated “progressive
sieving” techniques that blur the sieving into BKZ), second, we can just
take γ = 1 and use a strict inequality: ∥v − w∥ < ∥v∥. While this doesn’t
guarantee convergence, the discrete nature of the lattice means that it should
converge.

Choosing the list size: Let’s treat each vector v as a random variable,
and define the indicator random variables 1vw as 1 if (v, w) is a reducing pair
(∥v − w∥ < ∥v∥, and 0 otherwise. Then

|Li+1| =
∑

v,w∈Li

1vw (2.137)



52CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

While these indicator variables are highly correlated, we can use linearity of
expectation:

E[|Li+1|] =
∑

v,w∈Li

E[|1vw|] ≈
(
|Li|
2

)
Pr[∥v − w∥ < ∥v∥] (2.138)

where the last step is based on a heuristic assumption that each vector in Li

should behave like a uniformly random vector on some hypersphere. Thus,
we need that probability.

By normalizing, we can model v and w as unit vectors, and so ∥v−w∥ <
∥v∥ is equivalent to ∥v−w∥ < 1, and this is equivalent to the angle between
v and w being less than π

3
(draw the two-dimensional subspace spanned by

v and w to convince yourself of this). Then it has been shown that the
probability of two random unit vectors on the n-dimensional hypersphere
being within an angle θ of each other is

(sin(θ))n+o(n) (2.139)

where the o(n) in the exponent hides any extra polynomial, constant, or even
subexponential factors.

We know that sin(π/3) =
√
3/4, so that means (

√
3
4
)n+o(n) is the prob-

ability that two vectors reduce each other. That’s exponentially small! Put
together, this means

E[|Li+1|] ≈ |Li|2
(√

3

4

)n+o(n)

(2.140)

We could argue that we want Lk, the final list, to have at least one vector,
and use this probability to work backwards. But it’s much easier to notice
that if we set a target of |Li| = |Li+1|, then we get the requirement

|Li| ≈

(√
4

3

)n+o(n)

= 20.2075n+o(n). (2.141)

In other words, the list size stays relatively unchanged in each iteration. If
you do the math to see how large we need L0 to be to give us at least one
vector at the end, it’s almost exactly this size anyway.

Already this gives us a lower bound on memory and time with this tech-
nique: it will take us at least that much time to create the initial list, and it
needs that much memory.



2.2. LATTICES 53

Runtime: We have everything in place to analyze the runtime now. We
need poly(n) iterations, and each iteration checks all pairs in a list of size(√

4
3

)n+o(n)

. Thus, the primary component in the runtime is the square of

the list size: (
4

3

)n+o(n)

= 20.415n+o(n). (2.142)

This is blazing fast compared to enumeration (for large n), but it has
the drawback of using exponentially large memory. There was a time when
people believed sieving was not practical until large sizes, but that turned
around with various optimizations and now all the biggest lattice sieving
records are held by sieving algorithms.

Optimizations: The hardest step is checking all the pairs of vectors, so
that is the part we should optimize. This is a lot like a collision-finding
search, and in other areas of cryptography, the best approach to collision
finding (inherently a quadratic-time problem) is divide-and-conquer: if we
can take a list of size n and divide it into k pieces, so that all collisions will
necessarily end up in the same piece, then it only costs (n/k)2 to search each
piece and we only need to repeat over k pieces, for a runtime of(n

k

)2
k =

n2

k
. (2.143)

That is, a factor k speed-up.
Unfortunately, no such partition can exist for finding close vectors. Sim-

ply put, closeness is not transitive: if v is close to w and w is close to u, it
may not be true that v is close to u. Thus, should w go in the same partition
as v, or the same partition as u? Either way misses the other pair. We could
put them all in the same partition, but that just pushes the problem back: I
can make an arbitrary chain of close vectors, and that would force us to put
all the vectors in the same partition.

Really, this means whatever partitioning scheme we use, there will be
some duplication. That’s fine, actually.

The best known schemes partition the sphere as follows: we select random
vectors c, and each one defines a “bucket” Bc. Any lattice vector v ∈ Li goes
into the bucket Bc if it’s close enough to c. The reasoning is that if v and
w are both close to c, it’s much more likely that they are also close to each
other.



54CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Techniques like this, with a few more optimizations, give us the best
known runtime: (√

3

2

)n+o(n)

= 20.2925n+o(n) (2.144)

using still only 20.2075n+o(n) memory.

2.3 LWE Constructions

We have seen that LWE is plausibly hard to break, given the connections to
lattices. Thus, we can now build some cryptoschemes from it.

2.3.1 Kyber

Kyber is a lattice-based key encapsulation mechanism. This means that
rather then directly encrypting a message, it just produces a shared random
string for two parties, which they can then use as a key for a symmetric key
cryptosystem.

As an outline to get to Kyber, the topics to cover are:

1. Ring-LWE

2. The Number Theoretic Transform (NTT)

3. Module-LWE

4. IND-CPA Security

5. The Fujisaki-Okamoto (FO) Transform

Rings

A ring is a mathematical object where you can add and multiply elements.
More concretely, a ring is a set of elements R, and an addition and mul-

tiplication operation, with the rules:

1. a+ b and ab are both in R, for any a, b ∈ R

2. a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c for any a, b, c,∈ R (associa-
tivity)



2.3. LWE CONSTRUCTIONS 55

3. a + b = b + a (commutativity). Most of what we work with is also
commutative for multiplication.

4. There exists 0, such that a+ 0 = a = 0 + a for any a ∈ R

5. For any a ∈ R, there exists −a ∈ R, such that a+ (−a) = 0.

6. There exists 1, such that 1a = a = a1 for any a ∈ R

7. a(b+ c) = ab+ ac for any a, b, c ∈ R (distributivity)

Notice that we don’t necessarily have multiplicative inverses for all elements.
Some useful rings for this course:

1. the integers

2. integers modulo any number q. If q is a prime, every element has a
multiplicative inverse except 0; if q is a composite, this is not true.

3. polynomials with integer coefficients

The actual ring that we will use is Rq = Zq[x]/(p(x)). This is a ring
whose elements are polynomials with coefficients in Zq, “modded out” by
some other polynomial p(x).

Modding out by a polynomial means that for any polynomial r(x), I can
add any multiple of p(x) to get some r(x)+s(x)p(x), and these are considered
equivalent.

In practice, this means that for any polynomial r(x), there is a unique
representative r(x) such that the degree of r(x) is d−1, where d is the degree
of p(x).

How can we see this? Let’s assume p(x) = p0+p1x+p2x
2+· · ·+pd−1x

d−1+
xd (that is, the leading coefficient of p(x) is 1). Then in our ring, p(x) ≡ 0
mod p(x), so

xd ≡ −p0 − p1x− p2x
2 − · · · − pd−1x

d−1. (2.145)

Then, algorithmically, we can “substitite”. Let r(x) be any polynomial in
Zq[x]. We can do this:

1. On input r(x) = r0 + r1x+ · · ·+ rmx
m

2. For i = m (the degree of r(x)) down to d:

(a) Subtract rix
i−dp(x) from r(x)



56CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

In our ring, p(x) ≡ 0, so this is equivalent to adding 0, hence r(x) is un-
changed (at least in our definition of the “same” polynomial).

If you work through this, you can see that each step cancels out the ith
coefficient and modifies only coefficients less than i. Thus, it gets us down
to degree d− 1.

This is great for us computationally because it means we can represent
any polynomial r(x) = r0 + r1x + · · · + rd−1x

d−1 as a vector in Zd
q , with

components (r0, r1, . . . , rd−1).
Once we do this, polynomial addition is easy: r(x) + s(x) = r0 + s0 +

(r1 + s1)x + · · · + (rd−1 + sd−1)x
d−1, so we can just add the components of

the vectors for r and s.
Polynomial multiplication is... not as easy. But there’s a fairly elegant

way to do it.

Lemma 2.3.1. There is a matrix M(x) ∈ Zd×d
q such that for any polynomial

r(x) ∈ Rq, M(x)r⃗ is the vector of coefficients of xr(x) mod p(x).

Proof. The matrix is this:
0 0 0 . . . 0 −p0
1 0 0 . . . 0 −p1
0 1 0 . . . 0 −p2
...

. . .
...

0 0 . . . 1 −pd−1

 (2.146)

To see this, notice that xr(x) = r0x + r1x
2 + · · · + rd−1x

d. That is, it shifts
all the coefficients, so that is what the left half of the matrix above does.
However, it has a coefficient for xd, but we know that xd ≡ −p0−p1x−· · ·−
pd−1x

d−1. Thus, we substitute that term, and it gives us the last column of
the matrix above.

With a matrix for x, we can easily make a matrix for any polynomial:

Lemma 2.3.2. For any polynomial s(x) ∈ Rq, there is a matrix M(s) such
that for any polynomial r(x) ∈ Rq with a vector of coefficients r⃗, M(s)r⃗ is
the vector of coefficients of r(x)s(x) mod p(x).

Proof. We can readily see that this is true for x2, since M(x)r⃗ is the vector
of coefficients for xr(x), then M(x)(M(x)r⃗) is the vector of coefficients for
x(xr(x)) = x2r(x). That is, M(x2) = M(x)2.



2.3. LWE CONSTRUCTIONS 57

This logic lifts to M(xk) = M(x)k for any k.
Then, for any c ∈ Zq, M(cx) = cM(x), which we can easily see by

multiplying all coefficients by c.
Then we notice that since vectors of coefficients are additive, we have

that M(s1 + s2) = M(s1) +M(s2).
Since all polynomials are sums of scalar multiples of powers of x, we get

the result.

Ring-LWE

All of this explains how we can do arithmetic computationally in Rq. Then
we can define the ring-LWE problem:

Problem 2.3.1 (Ring-LWE(d, q, p(x), χs, χe)). Select a(x) uniformly at ran-
dom from Rq = Zq[x]/p(x), and select s(x) ← χs and e(x) ← χe. Set
b(x) = a(x)s(x) + e(x) mod p(x). Given (a(x), b(x)), output s(x).

Since a(x) can be written as a matrix, this is a special instance of regular
LWE, since

a(x)s(x) + e(x) mod p(x) 7→M(a)s⃗+ e⃗ (2.147)

However, now the matrix M(a) is highly structured. It is (sort of) anti-
circulant, which you can see because all matrices M(xk) have the same prop-
erty (circulant means each row is formed by a cyclic shift of the previous row;
anti-circulant means the same, but you flip the sign of each entry when it
cycles past the end; (sort of) anti-circulant is the same but you also multiply
by some extra factor pi in each row).

As far as we know, there is almost no way to exploit this extra structure;
there are pathological rings people have found where ring-LWE is easy, but
for the rings used in practice, they seem safe.

Why ring-LWE? We added a lot of structure, which seems dangerous, so
what did we gain? Let’s examine how to do textbook ring-LWE encryption:

• KeyGen(): Select a(x) randomly, s(x) from χs and e(x) from χe, and
output (a(x), b(x) = a(x)s(x) + e(x) mod p(x)) as the public key and
s(x) as the secret key.

• Enc(PK= (a(x), b(x)),m): Select r(x) from χ′
s, e

′(x) from χ′
e, and e′′(x)

from χ′′
e . Compute c1(x) = r(x)a(x)+ e′(x), c2(x) = r(x)b(x)+ e′′(x)+

m(x)
⌊
q
2

⌉
.



58CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

• Dec(SK= s(x), c = (c1(x), c2(x)): Compute c2(x) − c1(x)s(x), round
the result to the nearest

⌊
q
2

⌉
.

What space does c2(x) live in? Unlike in traditional LWE, where c2 ∈ Zq,
here we have c2 ∈ Rq. That means m(x) ∈ Rq as well, which means m(x) has
d components! Thus, we can put a separate bit of m into each component,
and send d bits with one ciphertext.

Thus, the space complexity of ciphertexts has drastically decreased.

The space complexity of the public key has also decreased, because we
only need to send d coefficients of a(x), not a full d× d matrix. This doesn’t
matter in practice because we always just generate a(x) or A from a random
seed anyway, and such a seed is much smaller than even one row of A or one
polynomial.

The Number Theoretic Transform

So far, ring-LWE improves space complexity, but not runtime. Naively we
would expect polynomial multiplication, even modulo p(x), to need O(d2)
multiplications (e.g., if we express a(x) as M(a)). Here we give a mathemat-
ically elegant way to do this efficiently.

In Kyber, the modulus q is chosen as as the prime 3329, and the polyno-
mial modulus is p(x) = x256 + 1. Why?

Because this means q−1 = 28 ·13. The reason q−1 is valuable is because
that is the order of Z∗

q, the set of all invertible integers mod q. This means
there is some number g such that gq−1 ≡ 1 mod q, but gk ̸≡ 1 mod q for
any 0 < k < q − 1.

If we then set ζ = g13 mod q, the order of ζ is 28 = 256. This means
(ζ128)2 ≡ 1 mod q, and 1 has only two square roots modulo q: 1 and −1.
Thus,

ζ128 ≡ −1 mod q. (2.148)

or, ζ is a root of x128 + 1.

In fact, any odd power of ζ is also a root of this polynomial. To see this:(
ζ2k+1

)128 ≡ζ256kζ128 (2.149)

≡ζ128 (2.150)

≡− 1 mod q (2.151)



2.3. LWE CONSTRUCTIONS 59

since ζ has order 256. In fact, this means all odd powers up to 256 are distinct
roots of this polynomial; the fact that ζk ̸≡ 1 mod q for any k less than 256
means that all these odd powers are distinct.

This means we can factor x128 + 1 as:

x128 + 1 =
127∏
i=0

(x− ζ2i+1) (2.152)

Now, all of this was about x128+1, but the polynomial modulus is x256+1.
Don’t worry; we just substitute x2 for x:

p(x) = x256 + 1 = (x2)128 + 1 =
127∏
i=0

(x2 − ζ2i+1) (2.153)

The reason this is all useful is because of Sun’s theorem1:

Theorem 2.3.1. If p1(x), . . . , pn(x) are co-prime polynomials, then

Rq/
n∏

i=1

pi(x) ∼= (Rq/p1(x))× (Rq/p2(x))× · · · × (Rq/pn(x)) (2.154)

That is, there is an isomorphism from our ring Zq[x]/p(x) to the product
of the rings Zq[x]/(x

2 − ζ2i+1) for all the different i.
How do we compute this isomorphism? It turns out that because ζ is a

root of unity, this isomorphism looks almost identical to a Fourier transform.
Because we are using a root of unity modulo q, we call it a “Number Theoretic
Transform” (NTT) instead, but it works basically the same, and – critically –
fast Fourier algorithms work. That means we can compute the isomorphism,
and its inverse, in time O(n log n).

The incredible thing about this isomorphism is that both addition and
multiplication in a product of rings are both done component-wise. Thus, if
we start with two polynomials r(x), s(x), we can convert them both to the
NTT domain in time O(n log n), to get r̂(x) and ŝ(x), which are equal to

r̂(x) = (r̂1(x), . . . , r̂n(x)) (2.155)

where (in Kyber, at least) each r̂i(x) is only a degree-1 polynomial. Then we
have that

ŝ(x)r̂(x) = (r̂1(x)ŝ1(x), . . . , r̂n(x)ŝn(x)). (2.156)

1Better known as the Chinese Remainder Theorem



60CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Each individual multiplication is regular polynomial multiplication modulo
pi(x), which is quadratic in the degree of pi(x), but if all the pi(x) have
bounded degree (like in Kyber where it’s all degree 2) then each individual
multiplication is very cheap: O(1). Thus, the overall complexity of polyno-
mial multiplication went from O(n2) to O(n) (or, O(n log n) if you count the
conversion into and out of the NTT representation).

This makes Kyber very fast. In fact, the slowest subroutines of Kyber
are the symmetric key subroutines, like expanding the matrix a from a seed.

Let’s consider how this can change Kyber subroutines. We’ll focus on
Keygen. We could change it to this:

1. Sample a(x) randomly, s(x) from χs and e(x) from χe

2. Convert them all to the NTT domain as â(x), ŝ(x), and ê(x)

3. Compute b̂(x) = â(x)ŝ(x) + ê(x) (linear time!)

4. Convert b̂(x) back to b(x)

5. Output a(x) and b(x).

This is slightly inefficient. First, because the NTT transformation is an
isomorphism, a uniformly random a(x) produces a uniformly random â(x), so
we can just smaple â(x) directly. We cannot sample ŝ(x) and ê(x) randomly,
unfortunately (well, we could sample small elements in the NTT domain, but
that’s trivially broken – do you see why?)

But, notice that the encryptor needs to multiply by a(x) and b(x) as well,
so they will need to compute â(x) and b̂(x), so we might as well just send
them in the NTT domain. Indeed, Kyber does this, though it does something
slightly different for decryption, as we’ll see.

Module LWE

The ring-LWE construction above is great, but it suffers two problems:

1. what if all of that extra structure makes it easier to break?

2. what if we need to use a bigger ring?



2.3. LWE CONSTRUCTIONS 61

For the second problem, if the structure is not useful to an attacker, they
would approach it using the lattice attacks from the previous section. These
will depend on the dimensions of the “matrix” A, i.e., the degree of the
polynomial. If we need to upgrade to more security, we would need to pick
an entirely new polynomial and an entirely new modulus (if we want to keep
the efficient NTT). This is not a great system.

Something that solves both of these problems is module LWE. More or
less, this is the traditional matrix LWE, but the elements of the matrix are
elements of a polynomial ring.

Problem 2.3.2 (Module LWE). The search module LWE(k, ℓ, q, p(x), χs, χe)
problem is: let Rq = Zq[x]/p(x), sample a uniformly random matrix A ∈
Rk×ℓ

q , sample s ∈ Rℓ
q from χs and sample e ∈ Rk

q from χe, and output (A,As+
e). Given this output, recover s.

To be a bit more explicit, in Kyber-512, k = ℓ = 2, so the public key
looks like (

b1(x)
b2(x)

)
=

(
a11(x) a12(x)
a21(x) a22(x)

)(
s1(x)
s2(x)

)
+

(
e1(x)
e2(x)

)
(2.157)

=

(
a11(x)s1(x) + a12(x)s2(x) + e1(x)
a21(x)s1(x) + a21(x)s2(x) + e2(x)

)
(2.158)

If we NTT each component, we can still do the same kind of multiplication,
so the module structure works nicely with the NTT.

Notice that if we take k = ℓ = 1, we recover ring-LWE, and if we want
p(x) = x − 1, we recover original LWE. Module-LWE lets us find trade-offs
in between.

IND-CPA Security

We now have all the tools to define what I will call “Kyber-like PKE”.
Let Rq = Zq[x]/(x

256 + 1). The scheme is parameterised by k ∈ {2, 3, 4},
q = 3329, χs, and χe, where all the secret and error distributions are i.i.d.
distributions on each component.

• KeyGen(): Generate Â uniformly at random from Rk×k
q . Generate

s ∈ Rk
q from χs and e ∈ Rk

q from χe. Compute ŝ and ê by applying the

NTT to each component. The public key is PK= (Â, b̂ = Âŝ+ ê), and
the secret key is ŝ.



62CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

• Enc(PK,m): Generate r ∈ Rk
q from χs, and generate e′ ∈ Rk

q and

e′′ ∈ Rq from χe. Encode m(x) = m
⌊
q
2

⌉
, i.e., put each bit of m on one

component of the polynomial. Compute the NTTs r̂, ê′, ê′′, and m̂.

Set ĉ1 = r̂T Â+ ê′
T
and ĉ2 = r̂T b̂+ ê′′ + m̂ and output (ĉ1, ĉ2).

• Dec(SK, c): Compute m̂′ = ĉ2 − ĉ1ŝ. NTT the result to get m′; round
all components to the nearest multiple of

⌊
q
2

⌉
and output the result.

Kyber-512, Kyber-768, and Kyber-1024 are defined by taking k = 2, 3, 4.
They all have χe as centered binomial distributions with parameters n = 4
and p = 1

2
; χs is also a centered binomial distribution with p = 1

2
, but n = 4

for Kyber-768 and Kyber-1024, while Kyber-512 has n = 6. This makes the
error slightly wider for Kyber-512; I assume this adds a small amount of
security without appreciably increasing decryption failure probability.

Our goal is to prove that this is secure in some sense. Critically, it is not
secure in a very meaninful sense (IND-CCA security), but for now we prove
IND-CPA security.

Definition 2.3.1. The Indistinguishability under chosen plaintext attack
(IND-CPA) game is as follows, for an adversarial algorithm A:

1. A challenger generates a keypair: KeyGen()→ (PK,SK).

2. A receives PK, and can make a polynomial number of queries to an
encryption oracle, which outputs Enc(PK, ·).

3. A outputs two messages m0 and m1.

4. The challenger selects a uniformly random bit b ∈ {0, 1}, and returns
cb = Enc(PK,mb) to A.

5. A can make another polynomial number of queries to an encryption
oracle, which outputs Enc(PK, ·).

6. A outputs a bit b′.

We say that an adversary wins the IND-CPA game if b = b′, i.e., their
output matches the challenger’s random bit. We say that the advantage of
an algorithm A is

adv = Pr[A wins the IND-CPA game]− 1

2
. (2.159)



2.3. LWE CONSTRUCTIONS 63

There is a trivial attack which wins with probability 1
2
– just guess a

random bit – so that is why we subtract 1
2
.

Finally, we say that a scheme is IND-CPA secure if the advantage of any
probabilistic polynomial time (PPT) adversary is negligible.

Theorem 2.3.2. If decisional module-LWE(k+1, k, q, x256+1, χs, χe) is hard,
then the Kyber-like PKE is IND-CPA secure.

Actually, we will prove something more precise:

Lemma 2.3.3. If aDMLWE,k+1 is the maximum advantage for a PPT ad-
versary against decisional module-LWE(k + 1, k, q, x256 + 1, χs, χe), then the
maximum advantage of any PPT adversary in the IND-CPA game against
Kyber-like PKE is 4aDMLWE,k+1.

Proof. First, let’s consider Game 0, the IND-CPA game the adversary ex-
pects:

GAME 1
Challenger Adversary

A
$←− Rk×k

q

s ∈ Rk
q ← χs

e ∈ Rk
q ← χe

(A, b = As+ e)
(A,b)−−−→

(PPT computation and queries)
Query:

m←−
r ∈ Rk

q ← χs

e′ ∈ Rk
q , e

′′ ∈ Rq ← χe

c1 = rTA+ e′T

c2 = rT b+ e′′ +m
⌊
q
2

⌉
(c1,c2)−−−→
m0,m1←−−−−

b
$←− {0, 1}

c1 = rTA+ e′T

c2 = rT b+ e′′ +mb

⌊
q
2

⌉
(c1,c2)−−−→

(PPT computation and queries)
Output b′



64CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

We assume that A wins this game with probability 1
2
+ adv0.

Intuitively, the adversary shouldn’t be able to recover s without breaking
LWE. So we should be able to swap that out for randomness. More precisely,
let’s define Game 1 as follows:

GAME 1
Challenger Adversary

A
$←− Rk×k

q

b
$←− Rk

q

(A, b = As+ e)
(A,b)−−−→

(PPT computation and queries)
Query:

m←−
r ∈ Rk

q ← χs

e′ ∈ Rk
q , e

′′ ∈ Rq ← χe

c1 = rTA+ e′T

c2 = rT b+ e′′ +m
⌊
q
2

⌉
(c1,c2)−−−→
m0,m1←−−−−

b
$←− {0, 1}

c1 = rTA+ e′T

c2 = rT b+ e′′ +mb

⌊
q
2

⌉
(c1,c2)−−−→

(PPT computation and queries)
Output b′

The difference is highlighted: the challenger didn’t even bother generating
a secret, they just gave a random value.

Now, what does the adversary do when we put them in this game? We
don’t know. We only know that the adversary wins with a certain advantage
in game 0; they might do something completely different in game 1. But, if
they do something different in game 1, then they must have detected that the
public key is not an LWE sample. That is, they must have solved decisional-
MLWE!

To make this statement more precise, we will let adv1 be the advantage
of our IND-CPA adversary in game 1. Right now, we have no guarantees on
what this is. Thus, we will try to solve D-MLWE to give a bound on it.

To that end, we now suppose we have a D-MLWE challenge (A, b). We



2.3. LWE CONSTRUCTIONS 65

use this to build a DLWE-solver by calling the adversary:
Decisional MLWE Solver
Input: (A, b) ∈ Rk×k

q ×Rk
q

(us, as the solver) Adversary
(A,b)−−−→

(PPT computation and queries)
Query:

m←−
r ∈ Rk

q ← χs

e′ ∈ Rk
q , e

′′ ∈ Rq ← χe

c1 = rTA+ e′T

c2 = rT b+ e′′ +m
⌊
q
2

⌉
(c1,c2)−−−→
m0,m1←−−−−

b
$←− {0, 1}

c1 = rTA+ e′T

c2 = rT b+ e′′ +mb

⌊
q
2

⌉
(c1,c2)−−−→

(PPT computation and queries)
Output b′

Output “LWE” if b′ = b; “Random” otherwise
Now we claim: if the DMLWE challenge (A, b) was really an LWE sam-

ple, the adversary’s perspective (when used as a subroutine of our DMLWE
solver) is exactly the same as when the adversary plays Game 0. Thus, we
know the adversary outputs b′ = b with probability 1

2
+adv0. In this case, we

win of we output “LWE”, which happens if b′ = b, so we win with probability
1
2
+ adv0.
If the DMLWE challenge (A, b) was uniformly random, the adversary’s

perspective is exactly the same as when it plays Game 1. Thus, (by definition)
the adversary outputs b′ = b with probability 1

2
+ adv1. In this case, we win

of we output “random”, which happens if b′ ̸= b, so we win with probability
1− (1

2
+ adv1) =

1
2
− adv1.

Putting this together, the probability of us winning the DMLWE game is

Pr[Win DMLWE] =Pr[DLWE challenge is LWE]Pr[Win with LWE challenge]

(2.160)



66CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

+ Pr[DLWE challenge is random]Pr[Win with random challenge]
(2.161)

=
1

2
Pr[Win with LWE challenge] +

1

2
Pr[Win with random challenge]

(2.162)

=
1

2

(
1

2
+ adv0

)
+

1

2

(
1

2
− adv1

)
(2.163)

=
1

2
+

1

2
(adv0 − adv1). (2.164)

But we know this must be at most aDMLWE,k (the advantage against DMLWE),
so we have that

1

2
(adv0 − adv1) ≤ aDMLWE,k (2.165)

To recap:

• We invented a new game, Game 1

• We used the IND-CPA adversary as a subroutine of a D-MLWE solver

• We argued that if the adversary behaves noticeably different in Game
0 and Game 1, then our D-MLWE solver would succeed

• Therefore, the adversary behaves almost the same in Game 0 and Game
1.

Looking at Game 1, the adversary clearly isn’t using the secret key, be-
cause the secret key does not exist. But maybe they found a way to recover
messages without the secret key, so we need another game. This will be game
2:



2.3. LWE CONSTRUCTIONS 67

GAME 2
Challenger Adversary

A
$←− Rk×k

q

b
$←− Rk

q

(A, b = As+ e)
(A,b)−−−→

(PPT computation and queries)
Query:

m←−
r ∈ Rk

q ← χs

e′ ∈ Rk
q , e

′′ ∈ Rq ← χe

c1 = rTA+ e′T

c2 = rT b+ e′′ +m
⌊
q
2

⌉
(c1,c2)−−−→
m0,m1←−−−−

b
$←− {0, 1}

c1
$←− Rk

q

c′2
$←− Rq

c2 = c′2 +mb

⌊
q
2

⌉
(c1,c2)−−−→

(PPT computation and queries)
Output b′

The new difference is in blue. Once again, we use our adversary as a
DLWE solver. This one looks a little bit different, mainly because we have
one more sample:



68CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Decisional MLWE-k + 1 Solver 2

Input: (Ã, b̃) ∈ Rk+1×k
q ×Rk+1

q

(us, as the solver) Adversary

Define A, b from Ã =

(
AT

bt

)
(A,b)−−−→

(PPT computation and queries)
Query:
m←−

r ∈ Rk
q ← χs

e′ ∈ Rk
q , e

′′ ∈ Rq ← χe

c1 = rTA+ e′T

c2 = rT b+ e′′ +m
⌊
q
2

⌉
(c1,c2)−−−→
m0,m1←−−−−

b
$←− {0, 1}

Let b̃ =

(
b1
b2

)
c1 = bT1

c2 = b2 +mb

⌊
q
2

⌉
(c1,c2)−−−→

(PPT computation and queries)
Output b′

Output “LWE” if b′ = b; “Random” otherwise
That is, we are using our decisional MLWE challenge as the ciphertext

response to the IND-CPA adversary.
We now claim that if the D-MLWE challenge was LWE, to the adversary

this looks like Game 1; if it was random, the adversary sees Game 2.
For both, notice that Ã is uniformly random, including its last row. But

in both Game 1 and Game 2, the adversary expects a uniformly random b
and uniformly random A for the public key (A, b). Thus, using the (transpose
of) the DMLWE challenge matrix Ã looks exactly like what the adversary
expects.

Then if the D-MLWE challenge is LWE, we have that

b̃ =

(
b1
b2

)
= Ãs+ e =

(
AT

bT

)
s+

(
e1
e2

)
=

(
AT s+ e1
bT s+ e2

)
(2.166)



2.3. LWE CONSTRUCTIONS 69

This looks exactly like an encryption, as long as we rename b1 and b2 to c1
and c2, and rename s to r, rename e1 to e′, and rename e2 to e′′. Since we
add m

⌊
q
2

⌉
, to b2, this is the same as Game 1.

Similarly, if b̃ is uniformly random, then the c1 and c2 we extract will look
just like the ciphertexts in Game 2.

Thus, if we define 1
2
+adv2 as the probability that our IND-CPA adversary

wins in Game 2, then we have

Pr[Win DMLWE(k + 1, k)] =
1

2
(
1

2
+ adv1) +

1

2
(
1

2
− adv2) (2.167)

1

2
+ aDMLWE,k+1 ≥

1

2
+

1

2
(adv1 − adv2) (2.168)

Adding up Equation 2.164 and 2.168, we get

1 + aDMLWE,k+1 + aDMLWE,k ≥ 1 +
1

2
adv0 −

1

2
adv2 (2.169)

or
adv0 ≤ 2aDMLWE,k+1 + 2aDMLWE,k + 2adv2. (2.170)

Two final points:
First, adv2 = 0. To see this, notice that c2 is uniformly random, so we are

hiding m with a one-time pad. This has perfect, information-theoretic secu-
rity; the adversary cannot distinguish the ciphertexts with any probability
greater than guessing.

Second, aDMLWE,k+1 ≥ aDMLWE,k. We know this because LWE gets
easier when we get more samples.

Thus, we can finally conclude that

adv0 ≤ 4aDMLWE,k+1 (2.171)

We lost a bit here – it could be four times as easy to distinguish two
Kyber encryptions as it is to distinguish Module-LWE – but if D-MLWE is
negligible, so is Kyber encryption (exercise: prove the other direction).

The FO Transform

We showed that the Kyber-like PKE is IND-CPA secure. So, is it secure?
NO! There are still chosen ciphertext attacks. LWE is particularly vulnerable



70CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

to these attacks because of decryption failures. We can construct ciphertext
that give us approximately the inner product vT s for vectors v of our choice,
and this quickly recovers s.

How do we avoid this? First, we formalize the game:
For the IND-CCA game (indistinguishability against chosen ciphertext

attack), let A be an algorithm whose runtime is polynomial in λ. In the
IND-CCA game:

1. A challenger generates a keypair: KeyGen()→ (PK,SK).

2. A receives PK, and can make a polynomial number of queries to:

• an encryption oracle, which outputs Enc(PK,m) on input m

• a decryption oracle, which outputs Dec(SK, c) on input c

3. A outputs two messages m0 and m1.

4. The challenger selects a uniformly random bit b ∈ {0, 1}, and returns
cb = Enc(PK,mb) to A.

5. A can make another polynomial number of queries:

• an encryption oracle, which outputs Enc(PK,m), on input m.

• a restricted decryption oracle, which outputs Dec(SK, c) on input
c if c ̸= cb, and outputs a fixed symbol (say, ⊥) if c = cb.

6. A outputs a bit b′.

We say that A “wins” the IND-CCA game if b′ = b.
An encryption scheme is IND-CCA secure if, for any polynomial time

algorithm A, the probability of winning is at most 1
2
+ ϵ(λ) where ϵ(λ) is

negligible.
To make an IND-CPA public key encryption scheme into an IND-CCA

public key encryption scheme, we use the FO transform. To motivate this,
we want to make sure the decryptor rejects all ciphertext which were not
formed as an honest encryption of some message. Thus, we want to prove
in some way that we encrypted the messages as we were supposed to. To do
this, notice that an encryption function should be random, but it uses the
randomness deterministically. That is, we can write

Enc(PK,m) = Enc(PK,m; r) (2.172)



2.3. LWE CONSTRUCTIONS 71

where r is the internal randomness used, and the right-hand side is a deter-
ministic function. If we were able to send m and r, then this would convince
the decryptor that we were honest. Except, how do we send them confiden-
tially?

We notice that the encryption scheme should give us shared randomness.
So we will use that shared randomness to encrypt m and r with a symmetric-
key scheme, and that allows the decryptor to verify everything.

That’s almost right, except we need to carefully use hash functions for
this to work. Here is the FO transform. It uses a public key encryption PKE,
a symmetric key encryption Sym, and two hash functions H1 and H2.

• FO.KeyGen(): Run PKE.KeyGen()→ PK,SK and output them as the
public and secret keys.

• FO.Enc(PK,m): Select a random r in the message-space of PKE. Let
c1 = PKE.Enc(PK, r;H2(m, r)) and let c2 = Sym.Enc(H1(r),m). Out-
put c = (c1, c2).

• FO.Dec(SK, c = (c1, c2):

1. Compute r′ = PKE.Dec(SK, c1)

2. Compute m′ = Sym.Dec(H1(r
′), c2)

3. Compute c′1 = PKE.Enc(PK, r′, H2(m
′, r′))

4. If c′1 = c1, output m
′; otherwise, output ⊥.

Why is this CCA-secure? We give a quick proof sketch in the random
oracle model. We will start with an IND-CCA adversary against FO and
use it to construct an IND-CPA adversary against PKE. If PKE is IND-CPA
secure (like our Kyber-like protocol), this would imply that the FO transform
is IND-CCA secure.



72CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

IND-CPA IND-CPA IND-CCA
Challenger Solver (us) Adversary

PK−−→ PK−−→
Plaintext Query:

m←−
m←−
c−→

Record (m, c) in a set M
c−→

Random Oracle Query:
r←−

r←−
h−→

Record (h, r) in a set H
r−→

Ciphertext Query:
c←−

Check all (h, r) ∈ H
If any can be encrypted to c,

output the corresponding message
Otherwise, output ⊥

Forward all other messages
That is, we just forward messages, but we record all messages, ciphertexts
and queries to the random oracle.

If the IND-CCA adversary encrypts a message honestly, then we can
recover it in polynomial time (at worst, quadratic in the size of H), because
it can only do this by sending the inputs to the random oracle.

Thus, if the adversary sends us a ciphertext, either:

• they encrypted it honestly, in which case we can send them the decryp-
tion, as they expect;

• they encrypted it dishonestly so it is invalid (i.e., does not pass the
decryption checks), in which case we give them ⊥, as they expect;

• they encrypted it dishonestly but it is actually valid, in which case we
give them ⊥ but they expect a message, which is unexpected.



2.3. LWE CONSTRUCTIONS 73

If something happens to the adversary that is different from the game
they expect to be playing, their behaviour is undefined. So, we want to
upper bound the probability of that last event.

However, for a ciphertext (c1, c2) to be valid, it means that defining

• r′ = PKE.Dec(SK, c1)

• m′ = Sym.Dec(H1(r
′), c2)

then PKE.Enc(PK, r′;H2(m
′, r′)) = c1. But by assymption, the adversary

either did not query r′ or (m′, r′) to the random oracle. Thus, one of those two
values will end up uniformly random, so the probability that the ciphertext
will be valid is independent of the (c1, c2) that the adversary sent, so the
probability of it matching up is negligibly small (i.e., exponentially small in
the output length of H2 and/or H1).

There’s subtleties here, but that’s the idea (you need to argue that chang-
ing the randomness in the PKE will produce a new ciphertext with all-but-
negligible probability, but that needs to be true for IND-CPA security).

KEMs

Kyber is not actually the FO transform of our Kyber-like PKE, because
Kyber only needs to be a key encapsulation mechanism (KEM). That is,
instead of encrypting and decrypting, we have

• KEM.Encaps(PK)→ (c, k)

• KEM.Decaps(SK, c)→ k

In other words, we just want to generate a shared secret, rather than en-
crypt a specific message. Since we’ll use the output as input to much faster
symmetric-key encryption anyway, this is fine.

For Kyber, they use a slightly modified FO transform.

• KEM.KeyGen(): Let (PK,SK′) = Kyber.KeyGen(). Compute h =
H(PK) and let z be a uniformly random 128-bit string; let SK =
(SK′,PK, h, z).

• KEM.Encaps(PK):

1. m is the hash of 128 uniformly random bits



74CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

2. (K ′, r)← H2(m∥H1(PK)

3. c← Kyber.Enc(PK,m; r)

4. K ← KDF(K ′, H1(c))

Output c as the ciphertext and K as the shared key.

• KEM.Decaps(SK = (SK′,PK, h, z), c):

1. m′ = Kyber.Dec(SK′, c)

2. (K ′′, r′)← H2(m
′∥h)

3. c′ ← Kyber.Enc(PK,m′; r′)

4. If c = c′, output k = KDF(K ′′, H1(c)), otherwise output k =
KDF(z,H1(c)).

Notice that they only need to send one part of the ciphertext because we
only want shared randomness, not a message.

2.3.2 Dilithium

We now use LWE and SIS to build a signature scheme.
Recall the definition of a signature scheme:
A digital signature scheme is a tuple of algorithms:

• KeyGen()→ (PK,SK)

• Sign(SK,m)→ s

• Ver(PK, s,m)→ b ∈ {0, 1}

A digital signature scheme is correct/complete if, for any keypair (PK,SK)
generated by KeyGen, the probability is negligible in λ that

Ver(PK,Sign(SK,m),m) ̸= 1 (2.173)

Security: Security definitions are complicated; see here for a taxonomy: .
Here I will give the definition of strong existential forgery under chosen-

message attack. The game is as follows

1. A challenger generates (PK,SK)← KeyGen() and initializes a setM.

https://crypto.stackexchange.com/questions/44188/what-do-the-signature-security-abbreviations-like-euf-cma-mean/


2.3. LWE CONSTRUCTIONS 75

2. An adversary A runs for polynomial time and is allowed polynomial
queries to a signing oracle, which does the following:

• Computes s← Sign(SK,m)

• Adds (m,σ) toM.

• Returns σ to A

3. The adversary A outputs (m∗, s∗).

We say that A wins the game if:

• (m∗, s∗) /∈M, and

• Ver(PK, s∗,m∗) = 1.

Notice that (m∗, s) could be inM and the adversary could still win, i.e.,
they could win by producing a new signature of a message that had already
been signed.

A digital signature scheme is sEF-CMA-secure if, for any polynomial time
A, the probability of A winning this game is negligible.

Outline: The official documentation for Dilithium proves strong existential
unforgeability directly. However, I like to think of signature schemes as zero-
knowledge protocols (specifically, Σ-protocols), so I will present it in that
way. This will make it a somewhat unusual appraoch, but hopefully it gives
the correct ideas. The rough outline is:

1. Brief background on zero-knowledge proofs and sigma protocols

2. Proto-Σ-Dilithium, an SIS-based signature scheme that is insecure

3. Rejection sampling

4. Proofs of soundness and honest-verifier zero knowledge

5. Final details for Dilithium



76CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Zero-Knowledge Proofs

Let L be some NP-language. Given some x, a Prover wants to convince a
Verifier that x ∈ L. One easy way to do this is to assume the Prover has
access to a witness w for x. By definition of NP, there exists an efficient
algorithm V such that V(w, x) = 1 (and if x /∈ L, V(w, x) = 0 for all possible
witnesses). The Prover can give the verifier the witness w and the Verifier
simply runs V .

However, this gives a lot of information to the verifier. Thus, we want
something where the only thing the prover learns is that x ∈ L. This also
implies that the verifier cannot convince anyone else that x ∈ L.

More precisely (but not too precise), we want 3 properties:

• Completeness: If x ∈ L and the Prover and Verifier are both honest,
then the Verifier will be convinced that x ∈ L.

• Soundness: If x /∈ L, no Prover can convince an honest Verifier that
x ∈ L.

• Zero-Knowledge: No verifier can learn anything more than x ∈ L.

These are a bit tricky to define (how do you mathematically define “knowl-
edge”?) so we will restrict to an easier subclass of zero-knowledge proofs.

A Σ-protocol is an interactive 3-round protocol. Both the Prover and
Verifier are assumed to start with knowledge of x. Then the Prover sends a
commitment Com; the verifier responds with a challenge Chal, and the Prover
responds with a response Res. The verifier than does some computation and
outputs 0 or 1.

We translate the three requirements of zero-knowledge proofs to this con-
text.

• Completeness: This is unchanged: If x ∈ L and the Prover and
Verifier are both honest, then the Verifier will output 1

• Soundness: There is an efficient extractor algorithm E such that if
there are two distinct transcripts (Com,Chal,Res) and (Com,Chal′,Res′)
(i.e., the commitments are the same) for which the Verifier outputs 1
for both, then E(Com,Chal,Res,Chal′,Res′) outputs a witness for x with
non-negligible probability.



2.3. LWE CONSTRUCTIONS 77

• Zero-Knowledge: We relax this slightly to “honest verifier zero knowl-
edge” (HVZK). There exists an efficient randomized simulation algo-
rithm S, such that S(x) = (Com,Chal,Res) is statistically indistinguish-
able from the transcript of an interaction between an honest Prover and
honest Verifier.

Why do these capture the intuitive notions we asked for?

Soundness: we argue by rewinding: suppose we have black-box access to
the Prover, but we are able to pause and save state from the Prover. We save
the state of the Prover after it sends Com; we then give one challenge Chal
and it gives a response Res, and then we restart it from our saved state and
send a different Chal′ and get a different Res′. If it convinces us with non-
negligible probability, then it ought to produce two valid transcripts with
non-negligible probability. From those two transcripts we extract a witness,
so certainly x ∈ L.

In fact, this means our Σ-protocol is a bit stronger than a zero-knowledge
proof, it’s a zero-knowledge proof of knowledge. That is, the soundness
property means that a successful Prover is computationally equivalent to
something that can produce a witness for x; this matches a common-sense
notion of what it means for the Prover to “know” a witness for x.

(to see the difference, consider discrete log. If g is a generator for a group
G and h ∈ G, it’s trivial to “prove” that there exists an exponent x such
that gx = h; however, proving that you know the exponent is harder and is
the basis for most pre-quantum signatures).

Honest Verifier Zero Knowledge: The meaning of the simulation should
be fairly clear: if we can simulate a transcript of messages without knowing
anything that the prover or verifier knows, then the verifier couldn’t have
learned anything from the transcript.

This isn’t exactly true, because what if the verifier had some hidden
knowledge? A bad Σ-protocol would be to have Chal be the public key
for a PKE scheme, and Chal is just an encryption of the witness. If the
PKE is IND-CPA secure, we can simulate this by encrypting any message
we want and it should look the same as the honest protocol (at least, to
computationally bounded distinguishers). So we want to avoid this case as
well.



78CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Public Coin Σ-protocols: In these, the Verifier can post all the random-
ness it uses publicly as part of the challenge Chal. Critically, it can’t post
this randomness before the commitment Com is sent, but it can send it after.

An example of a non-public coin Σ protocol is a proof of knowledge of the
secret key for the public key of a public key encryption scheme. The Prover
can send anything as the commitment, and then the Verifier picks a random
message m and encrypts it, and sends the ciphertext as Chal. The Prover
decrypts it and sends the message m as Res.

If you actually did this as the Verifier, you should be convinced that the
Prover knows the secret key; however, you needed to keep the message m
secret or else the Prover trivially cheats.

The encrypted-witness protocol from before is also not honest-verifier
zero knowledge if we use public coins, since then anyone could decrypt the
transcript. Then to simulate a transcript, you would need a witness for x,
which you cannot find.

With a public coin protocol, honest-verifier zero-knowledge really does
capture some notion of actual zero-knowledge. However, “honest verifier”
seems a bit too strong. If the verifier is honest enough, they can just pretend
they learned nothing (e.g., they could read the witness and then delete it).
So why do we care about this property?

Fiat-Shamir Tranform: The Fiat-Shamir transform turns a Σ-protocol
into a non-interactive zero-knowledge proof. This means the Prover sends
one message to the Verifier, who can verify it locally without any extra
communication.

To do this, all we do is have the Prover compute Chal = H(Com) for
a cryptographic hash function H. Then they send (Com,Chal,Res), and
the verifier runs the original Σ-protocol verification and also checks that
H(Com) = Chal.

The Σ-protocol soundness then means that this is computationally infea-
sible to cheat on, at least in the random oracle model, because the random
oracle model allows us to rewind and reprogram the hash function (exercise:
work out the details). More intuitively, suppose that for a specific commit-
ment, a Prover can produce a valid response for some number N of possible
challenges. If N is exponentially smaller than the output size of H, then
because the hash function looks random, the Prover would need an expo-
nential number of attempts at Com to find an H that gives Chal that it can



2.3. LWE CONSTRUCTIONS 79

respond to. Or, conversely, an efficient prover needs N ≈ the output size of
H. In that case, it’s easy to find two distinct challenges that the prover can
respond to, and then we can extract a witness from them.

Finally, we can turn a Fiat-Shamir transform into a signature by including
the message in the hash: Chal = H(Com,m).

Proto-Dilithium

We construct a Σ-protocol based on Module-SIS, which is nearly identical to
Schnorr signatures. For the public key, the Prover generates a wide matrix
A ∈ Rk×ℓ

q with k < ℓ, a small s← χs, and gives (A, t = As).

Public information: (A, t)
Prover Verifier
y ← χy

w = Ay
Com=w−−−−→

c ∈ Rq
$←− χc

Chal=c←−−−−
z = y + cs

Res=z−−−→
Verify that Az = w + ct

Quickly we need to specify: y and s are vectors of polynomials. c is just
one polynomial, so it is like a scalar. More precisely, we have something like

z =


z1(x)
z2(x)
...

zℓ(x)

 =


y1(x)
y2(x)
...

yℓ(x)

+ c(x)


s1(x)
s2(x)
...

sℓ(x)

 =


y1(x) + c(x)s1(x)
y2(x) + c(x)s2(x)

...
yℓ(x) + c(x)sℓ(x)

 (2.174)

Completeness is easy to check: If everyone is honest, then

Az = A(y + cs) = Ay + Acs = w + cAs = w + ct (2.175)

since c ∈ Rq will commute with A.
However, right now this is not sound. The problem is that because A is

wide, we can readily find a pre-image for w + ct for any w, c, t. Any of these
pre-images could be z.

But, if you look at the protocol, z should be constructed in a very special
way. It is y + cs, so if we ensure that y, c, s are all small, then z = y + cs is
also small. Thus, we add that check:



80CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Public information: (A, t)
Prover Verifier
y ← χy

w = Ay
Com=w−−−−→

c ∈ Rq
$←− χc

Chal=c←−−−−
z = y + cs

Res=z−−−→
Verify that Az = w + ct

and that z is small
In real Dilithium, the distributions we use are:

• χs is a centered binomial distribution of parameters (n, p) like Kyber
(though real Dilithium adds an error term as well; we will return to
this point)

• χy samples each coefficient in each coordinate from the uniform distri-
bution on [−γ1, γ1], with γ1 ∈ {217, 219}.

• χc is a polynomial with exactly τ non-zero coefficients, all randomly
chosen as ±1. τ ∈ {39, 49, 60}.

This scheme is not yet zero-knowledge. Consider what happens if you see
the ith coordinate of z which is equal to γ1 + npτ . Briefly, recall what “ith
coordinate of z means”: we see that z ∈ Rℓ

q, so z = (z1, . . . , zℓ). However,
each element zi is a polynomial in Rq, so it has coefficients:

zi = zi0 + zi1x+ · · ·+ zi,d−1x
d−1 (2.176)

Thus, I should really parameterize the components of zi by two indices: one
for the index in the vector, one for the index in the polynomial. Instead, I
will just use one index i to indicate some coefficient of some polynomial in
the vector z.

We know that |s|∞ ≤ np (because it is a centered binomial distribution),
we know |y|∞ ≤ γ1. Thus, this is the maximum possible value of z. This
tells us that sj = np in all coordinates where c = 1 and sj = −np in all
coordinates where c = −1. That is a lot of information about the secret!

Maybe you think: this is quite unlikely, so this is close to zero-knowlege,
but not exactly. No, actually; you can show that we get non-trivial informa-
tion about s if |z|∞ ≥ γ1 − npτ , and a sufficient condition for this is that



2.3. LWE CONSTRUCTIONS 81

(cs)i ≥ 0 (which has probability 1
2
if χs is symmetric, which it generally is)

and yi ≥ γ1 − npτ , or (cs)i ≤ 0 and yi ≤ −γ1 + npτ . This has probability
npτ
γ1

. That’s not too small! And since any coordinate where this holds gives
away information, the probability of a zero-knowledge Res is upper-bounded
by (

1− npτ

γ1

)ℓd

(2.177)

(where d is the degree of the polynomial in the polynomial ring defining Rq).
This probability is actually kind of small unless we make γ1 very large (if it’s
too large, though, it’s easy to forge signatures: see assignment).

Rejection Sampling

Our problem is how we can avoid revealing large z. First, let’s show that if
zi ∈ [−γ + npτ, γ − npτ ], then zi actually tells us nothing. Intuitively this is
because no matter what the value of (cs)i, for that zi there is precisely one
yi value such that zi = yi + (cs)i. Thus, zi is distributed independently of
(cs)i. Showing this formally is a bit more painful:

Lemma 2.3.4. Suppose the secrets s follow a distribution χs bounded be-
tween [−np, np], the commitment secret y is uniform in [−γ1, γ1], and c ∈
{−1, 0, 1}d has exactly τ non-zero entries. Then if z = y+ cs is in the range
[−γ + npτ, γ − npτ ], the distribution of s given z and c is exactly χs.

Proof. First, let us define s′ = c · s, since this will be easier to work with.
We know that s′ ∈ [−npτ, npτ ]. If χs is a product distribution then s′ will
be roughly normal, but it doesn’t matter. We can just say s′|c follows a
distribution χs′ . We can rewrite as

Pr[s|c, z] =
∑
s′

Pr[s|s′, c, z]Pr[s′|c, z] (2.178)

and note that Pr[s|s′, c, z] = Pr[s|s′, c], since z gives us no extra information
besides s′. Thus, if we can show that Pr[s′|c, z] = Pr[s′|c], then Pr[s|c, z] =
Pr[s|c] = Pr[s], since c is chosen indepedently of s.

We can use Bayes’ theorem:

Pr[s′|c, z] = Pr[z|s′, c] Pr[s′|c]
Pr[z|c]

(2.179)



82CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

And then we argue: Pr[z|s′, c] = Pr[z|s′], since z = y + s′ (i.e., no extra
dependence on c). Then we can say Pr[z|s′] = Pr[y = z − s′|s′]. If z ∈
[−γ1 + npτ, γ1 − npτ ], then z − s′ ∈ [−γ1, γ1], so Pr[y = z − s′|s′] = 1

2γ1+1
.

Substituting in the above gives us

Pr[s′|c, z] =
1

2γ1+1
Pr[s′|c]

Pr[z|c]
(2.180)

so now we want to compute Pr[z|c].
Another way to write this is Pr[z|c] =

∑
s′ Pr[z|c, s′] Pr[s′]. We already

showed that Pr[z|c, s′] = 1
2γ1+1

, i.e., it is independent of s′; this means

Pr[z|c] = 1
2γ1+1

. Putting that in the above cancels out and we get

Pr[s′|c, z] = Pr[s′|c]. (2.181)

Substituting all that we know into Equation 2.178, we get

Pr[s|c, z] =
∑
s′

Pr[s|s′, c] Pr[s′|c] = Pr[s|c] = Pr[s] (2.182)

Okay, we want to ensure that we only choose c and y such that |y−cs|∞ ≤
γ1 − npτ . That is, we want the following protocol:

Public information: (A, t)
Prover Verifier
y ← χy

w = Ay
Com=w−−−−→

c ∈ Rq
$←− χc(w, t)

Chal=c←−−−−
z = y + cs

Res=z−−−→
Verify that Az = w + ct
and that |z|∞ ≤ γ1 − npτ

where χc(w, t) is the distribution where Pr[c← χc(w, t)] = Pr[c← χc||y−
cs|∞ ≤ γ1 − npτ ].

You might reasonably object: how does the verifier possibly sample from
this distribution, without knowing y and s? The answer: they don’t. Instead
they just send some c and the Prover rejects it if it is too big:



2.3. LWE CONSTRUCTIONS 83

Public information: (A, t)
Prover Verifier
y ← χy

w = Ay
Com=w−−−−→

c ∈ Rq
$←− χc(w, t)

Chal=c←−−−−
z = y + cs

If |z|∞ > γ1 − npτ , set z ← ⊥
Res=z−−−→

Verify that Az = w + ct
and that |z|∞ ≤ γ1 − npτ

Now you might also reasonably object: doesn’t this reveal information
about s anyway? Yes. It reveals less information, but non-zero.

However, this works very very well with the Fiat-Shamir transform. Here,
the Prover computes Chal = H(Com) and then computes z. If z is too big,
they restart the entire protocol. Commitments that produce bad challenges
simply don’t appear.

In this way, it looks like a Fiat-Shamir transform where the Verifier sam-
ples from the distribution χc(w, t)!

To summarize, we have the final proto-Dilithium protocol:

• KeyGen(): Sample uniform A ∈ Rk×ℓ
q , and sample s ← χs. Output

(A, t = As) as the public key, keep s as secret key.

• Sign(SK = s,m): Set z = ⊥. While z = ⊥:

1. Sample y ← χy

Security Proofs

Here we sketch security proofs. For soundness I’ll argue unforgeability, and
for zero-knowledge I’ll treat it as a Σ-protocol.

We need a new(ish) hard problem, module-inhomogeneous short integer
solutions:

Problem 2.3.3 (Module-ISIS(k, ℓ, q, p(x), β)). Given Rq = Zq[x]/p(x), A ∈
Rk×ℓ

q , and x ∈ Rk
q , find v such that Av = x and |x|∞ ≤ β.



84CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

Theorem 2.3.3. Proto-Dilithium is unforgeable as long as Module-ISIS(k, ℓ, q, p(x), 2(γ1−
npτ)) is hard.

Proof. Given a module-ISIS challenge (A, x), we select two random c, c′ ← χc.
We give (A, t = (c′ − c)−1x to the forgery adversary. When the adversary
produces a valid signature (w, c, z), we re-wind the adversary and re-program
the random oracle so that H(w) = c′, and get a signature (w, c′, z′) (is this
possible? yes, with non-negligible probability, by the “forking lemma”).

Given these two signatures, we claim that z′ − z is a solution to our
module-ISIS problem. Since these are valid signatures, ∥z′∥∞, ∥z∥∞ ≤ γ1 −
npτ . Then z′− z is small enough to be a solution because we want solutions
at most 2(γ1 − npτ). Then we note that to be valid signatures, Az = w + ct
and Az′ = w + c′t, so

A(z − z′) = w + c′t− (w + ct) = (c′ − c)−1t = x (2.183)

which is our target.

The above proof is a bit sketchy, but I hope you get the idea. We could
extend this to more general unforgeability in the random oracle model by
using the zero-knolwedge proof below (honest-verifier zero knowledge means
we can simulate proofs, which allows us to answer the adversary’s signature
queries without knowing the secret key, as long as we can program the random
oracle).

Then we prove zero-knowledge.

Theorem 2.3.4. Proto-Σ-dilithium is honest-verifier zero knowledge.

Proof. We want to generate the proof backwards. In the interactive Σ-
protocol the commitment w and the challenge c are independently distributed
(conditional on y+ cs being smaller than our rejection bound), but z is fixed
given w and c. We can rearrange this and see that the marginal distribu-
tion of z is uniformly random on [−γ + npτ, γ − npτ ] (since y is uniformly
random), so c and z are also independently distributed (exercise: work this
out).

Thus, to simulate a proof, we select a uniformly random z in [−γ+npτ, γ−
npτ ]dℓ. Then we select a random c from χc, and compute w = Az − ct.

Notice that this implies Az − ct = Az − c(As) = A(z − cs); thus, we can
let y = z − cs. By construction of z and c, we know |y|∞ ≤ γ1.



2.3. LWE CONSTRUCTIONS 85

We argue now that this follows the expected distribution. Let Thon be
a random variable representing the transcript produced by an honest in-
teraction, and let Z,C, Y, S be random variables representing the choice of
z, c, y, s by an honest prover and verifier Let us consider simply Pr[Thon =
(w, c, z)|S = s] – the probability of a given transcript. First, notice that ex-
cept for pathological parameters, w uniquely defines y, so this is equivalent
to Pr[AY = w,Z = z, C = c|S = s] = Pr[Y = y, Z = z, C = c|S = s]. We
can use the product rule:

Pr[Y = y, Z = z, C = c|S = s] = Pr[Z = z|Y = y, C = c, S = s] Pr[Y = y, C = c|S = s]
(2.184)

Notice that Pr[Z = z|Y = y, C = c, S = s] = 1, since Z is a deterministic
function of Y,C, S, and the protocol is complete. Then we consider Pr[Y =
y, C = c|S = s]. We can use the product rule again

Pr[Y = y, C = c|S = s] = Pr[Y = y|C = c, S = s] Pr[C = c|S = s] (2.185)

As before, let s′ = cs. Because of the rejection sampling, an honestly-
generated transcript will only produce (c, y) for s such that y + cs is in the
range [−γ+npτ, γ−npτ ] (let κ = γ−npτ for notational convenience). Thus,
given c and s, Y will only take values in the range [−κ− cs, κ− cs]∩ [−γ, γ].
But in fact, we chose κ such that [−κ− cs, κ− cs] ⊆ [−γ, γ], so Y will take
values uniformly in the range [−κ−cs, κ−cs], meaning Pr[Y = y|C = c, S =
s] = 1

2κ+1
.

Extending this logic, we see that Pr[C = c|S = s] = χc(c): because the
probability of compatible Y is the same for all c and s, we can sample c in-
dependently of s and there will always be the same probability of compatible
Y .

Putting this together, we end up with

Pr[Thon = (w, c, z)|S = s] =
1

2κ+ 1
χc(c) (2.186)

Now we consider the probability that a simulated transcript Tsim =
(w, c, z) for the same (w, c, z). Let W ′, Z ′, C ′ be random variables repre-
senting the simulated output; we have that

Pr[Tsim = (w, c, z)|S = s] (2.187)

=Pr[W ′ = w,C ′ = c, Z ′ = z|S = s] (2.188)



86CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM

=Pr[W ′ = w|C ′ = c, Z ′ = z, S = s] Pr[Z ′ = z|C ′ = c, S = s] Pr[C ′ = c|S = s]
(2.189)

by using the product rule. The simulator sets w deterministically, so the
first probability is 1; the simulator selects z independently of c and uni-
formly from [−κ, κ], so the middle probability is 1

2κ+1
; the simulator selects

c independently from χc, so the last probability is χc(c). This gives

Pr[Tsim = (w, c, z)|S = s] =
1

2κ+ 1
χc(c) = Pr[Thon = (w, c, z)|S = s]

(2.190)
Thus, we have perfectly simulated an honest transcript.

Given that proto-Σ-Dilithium is honest-verifier zero knowledge, after the
Fiat-Shamir transform it is zero-knowledge in the random oracle model, as
the output of the hash function should look random (we need to reprogram
the random oracle to do the same simulation, but that should be fine).

Tweaks

To make proto-Dilithium secure, we would need s to be fairly large so that
Module-ISIS is hard. But if s is fairly large, then the likelihood of rejecting
is much higher, and then the number of aborts is higher during the rejection
sampling (i.e., z = y + cs is much more likely to be too large).

To make s smaller, we can switch to a module-LWE problem: our secret
key will be t = As + e, where both s and e are smaller than the original s.
However! This ruins correctness: if z = y + cs, then

Az = Ay + cAs = w + c(t− e) = w + ct− ce (2.191)

But this is relatively easy to fix: we just check that Az is close to w + ct.
Since both c and e are small, it will be relatively close.

Unfortunately, it causes another problem: as an assignment problem, we
can recover e from the above scheme. Given e, we can take t − e = As and
solve for s. This still isn’t trivial (A is too wide), but we assume this is too
easy (the whole point of switching to module LWE is to use s which is too
small to be a hard enough module-ISIS instance).

How do we hide e? We compress the public key by suppressing low-order
bits. That is, we do not directly output w = Ay; we output only the highest
bits of w. This way, we can compare Az to w + ct and it will still be small.



2.3. LWE CONSTRUCTIONS 87

This creates two other problems:
First, the rounding still gives away some extra information. Specifically,

suppose we round up or down by an interval of length 2γ2 (why not a power
of 2? because that does not work nicely with arithmetic modulo q; rounding
might overflow modulo q and cause issues). Then if we find that (Az)i is
γ2+τnp from w+ct, then that gives us a lot of information about e (assuming
e is also drawn from a centered binomial distribution of parameters (n, p)).
This is the same problem we had with the extra information we leaked about
the secret, and you might guess how we solve it: rejection sampling.

That is, in addition to ensuring that |z|∞ ≤ γ1−τnp, we must also ensure
that the difference of Az and w+ ct is at most γ2 − τnp in each component.

Second, there is a nice space-saving technique for Schnorr signatures that
also (mostly) works with this lattice variant. Notice that in the proto-
Dilithium protocol, given (c, z), we can recover w as w = Az − ct. This
seems pointless because we need the prover to commit to the commitment
before getting the challenge, but in the Fiat-Shamir transform, that is already
“baked in” to the challenge: the Verifier gets (c, z), computes w′ = Az − ct,
and checks that c = H(w′) (technically, c = H(w′,m) for a signature of a
message m). You can convince yourself that for a secure hash function, this
is just as secure as the original protocol.

The savings are very good here: typically we can use a 256-bit seed as
the challenge c (expanding with a PRG to the “real” challenge if need be),
whereas w would need to be an element of Rk

q , which is at least 1024 elements
of Zq in Dilithium.

But once we’ve compressed the public key, we cannot precisely recover w.
The Verifier only gets w up to some noise and rounding. Thus, if the prover
wants to send only w1, they must compute c = H(w1). Then they need to
ensure that the Verifier can re-compute w1 = HighBits(Az − ct). But that
equation is not true: w1 is the high bits of Az − cAs, not Az − ct. There
might be overflows and other problems. Thus, the Prover also sends a series
of small “hints” to recover w1 from Az − ct.

If the original protocol where the Prover sends (w1, c, z) is secure, then
the hints tell the Verifier nothing new: in the modified protocol the Verifier
gets (c, z, hint), where the hint is only enough to re-construct w1.



88CHAPTER 2. LEARNINGWITH ERRORS: KYBER AND DILITHIUM



Chapter 3

Hash-based Digital Signatures

A hash function is a publicly-described function H : {0, 1}∗ → {0, 1}n, mean-
ing it can take arbitrary length inputs and outputs an n-bit binary string. It
should satisfy three properties:

• Collision-Resistance: It should be hard to find x ̸= y such that
H(x) = H(y)

• Preimage Resistance: Given h ∈ {0, 1}n, it should be hard to find
x such that H(x) = h.

• Second Preimage Resistance: Given x, it should be hard to find
y ̸= x such that H(x) = H(y).

A hash-function is our best attempt to create a one-way function. It
turns out that we cannot create public-key encryption from one-way functions
alone, though it is possible to create digital signatures, which we will show
constructively in this chapter.

It is also worth noting that if we cannot create a secure hash function, then
basically all of our cryptography falls apart, classical or quantum. Even most
approaches to quantum key distribution use hash functions somewhere. This
means that hash-based digital signatures are one of the most conservative
approaches to post-quantum security.

Another nice thing is that all the protocols we will consider will use a
generic hash function. This way, if a specific hash function (say, SHA-256)
gets broken, we can swap in a new hash function and all of the protocols will
still work.

89



90 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

3.0.1 Hash Function Attacks

Certain hash functions might have enough structure that it is easy to break
one of the three security properties. But suppose that there are no structural
attacks and we simply treat the hash function as an oracle that produces some
output. What are the best attacks?

Preimage and Second Preimage Resistance : The best classical at-
tacks here are, more or less, O(2n) time: we simply guess random values until
we find one that matches.

The best quantum attack is Grover’s algorithm, with runtime O(
√
2n).

Though, Grover’s algorithm parallelizes badly. No real-world attack uses
O(2n) time, even for the n = 56 bit keys of DES; real-world attacks paral-
lelize. Reducing the runtime of the classical brute-force search to T takes
2n/T processors, and the total amount of work is still O(2n). For Grover’s
algorithm, reducing the runtime to T takes 2n/T 2 processors, so the total
amount of work increases to O(2n/T ).

Collision Resistance : The best classical attack is based on the birthday
paradox, which says that with O(2n/2) random values, we should expect a col-
lision. Finding such a collision can be done with iterations and distinguished
points; see [vW96].

Quantum computers can find collisions with O(2n/3) queries to the hash
function, but this requires O(2n/3) bits of QRAM. Arguably this means the
“cost” of such a search (in terms of memory×time) is O(22n/3).

Overall, a generic hash function is:

• exponentially hard to attack for classical computers;

• exponentially hard to attack for quantum computers, but with a slightly
smaller exponent;

• probably just as hard in practice for quantum computers to attack as
classical.

3.1 Winternitz Signature Scheme

Without any introduction, we introduce an insecure and ineffective attempt
at a signature scheme.



3.1. WINTERNITZ SIGNATURE SCHEME 91

x0

H

H

H

H

H

H

PK

H

σ(3)

Figure 3.1: Iterating H for an extremely insecure signature

A note on notation: Hn(x) means to iterate H for n times. That is,

Hn(x) = H(H(. . . (H︸ ︷︷ ︸
n times

(x)). (3.1)

Winternitz Signature Scheme: Attempt 1

• KeyGen(): Generate random x0. Let PK = Hn(x0) and SK =
x0.

• Sign(SK,m): Set σ = Hm(x0) (assuming m ∈ {0, . . . , n− 1}).

• Verity(PK, σ,m): Check that Hn−m+1(σ) = PK.

We can represent this visually as in Figure 3.1:
The reason this scheme might work is that given just the public key, the

only way to create a signature is to find a pre-image of the public key, which
is hard. If we see a signature, we know that the person that generated the
secret key must have released the pre-images.

However, it is trivially insecure with even a single adversarial message
query. Once a signer signs a single message m, we can compute H(m) which



92 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

is the signature for m + 1. More generally, we can forge signatures for all
m′ > m once we see a signature for m.

Worse, if we allow chosen message attacks, the adversary will just ask for
a signature of m = 0, and obtain H0(x0) = x0, i.e., they simply receive the
secret key.

To fix this problem, we introduce a checksum, and we hash the message
to sign.

Winternitz Signature Scheme: Attempt 2
Let H : {0, 1}∗ → {0, 1}n and H2 : {0, 1}∗ → {0, . . . , n − 1} be hash
functions.

• KeyGen(): Generate random x0 and y0. Let PK =
(Hn(x0), H

n(y0)) and SK = (x0, y0).

• Sign(SK,m): Let h = H2(m). Compute σ =
(Hh(x0), H

n−1−h(y0)).

• Verity(PK = (PK1,PK2), σ = (σ1, sigma2),m): Compute h =
H2(m). Verify that Hm−h(σ1) = PK1 and Hh+1(σ2) = PK2.

We can represent this visually as in Figure 3.2
Looking at this figure, in red is the signature itself, and in blue is what

we can compute from the signature. Applying the hash function lets us move
“up” on the checksum side (for y), and down on the x side.

(why are they offset by 1? this ensures that even if h = 0, we at least
need to output some pre-image on either side.)

Considering this signature, if we have any other message m′ such that
H(m′) = h′ ̸= h = H(m), we cannot forge a signature for m′ from the
signature for m. If h′ < h, we do not know the preimages on the x side, and
if h′ > h, we do not know the preimages on the y side.

But: what if more than one message is signed? Suppose we have signa-
tures for m1 and m2, such that h1 = H2(m1) and h2 = H2(m2). Illustrating
this looks like Figure 3.3.

You can see from the image that by iterating the hash function, we can
forge a signature for anything in between h1 and h2. Thus, our forgery attack
is as follows:

1. On receipt of PK, make signature queries for m1 and m2, receiving



3.1. WINTERNITZ SIGNATURE SCHEME 93

x0

y0

H

H

H

H

H

H

H

H

H

H

H

H

PK1

H

PK2

H

σ(3)

Computable
from σ(3)

Figure 3.2: Single-column Winternitz signature (insecure)



94 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

x0

y0

H

H

H

H

H

H

H

H

H

H

H

H

PK1

H

PK2

H

σ1, σ2

Computable
from σ1 and σ2

Figure 3.3: Extra information from multiple Winternitz signatures



3.1. WINTERNITZ SIGNATURE SCHEME 95

σ1 = (σ11, σ12) and σ2 = (σ21, σ22).

2. Select random messages m′ until H2(m1) < H2(m
′) < H2(m2) (assum-

ing WLOG that H2(m1) < H2(m2)).

3. Let h′ = H2(m
′), h1 = H2(m1) and h2 = H2(m2). Output (Hh′−h1(σ11), H

h2−h′
(σ22)

as a signature forgery for m′.

What is the runtime of this attack? If H2 is a well-designed hash function,
then H2(m

′) should be randomly distributed, so the best strategy to find m′

is to guess-and-check. The probability that H2(m
′) is in the right range is

h2−h1

n
, so the expected runtime is n

h2−h1
.

Since the length of the interval h2 − h1 is n
3
on average, it takes about 3

guesses.

How do we improve this? A simple method: just repeat it k times!



96 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

Winternitz Signature Scheme
Let H : {0, 1}∗ → {0, 1}n and H2 : {0, 1}∗ → {0, . . . , n − 1}k be hash
functions.

• KeyGen():

1. Generate 2k random values x1, . . . , xk and y1, . . . , yk

2. Let PKi = Hn(xi) and PKi+k = Hn(yi) for 1 ≤ i ≤ k.

3. Set SK = (x1, . . . , xk, y1, . . . , yk).

• Sign(SK,m):

1. Let (h1, . . . , hk) = H2(m)

2. Let σi = Hhi(xi) for 1 ≤ i ≤ k

3. Let ρi = Hn−1−hi(yi) for 1 ≤ i ≤ k

4. Output (σ1, . . . , σk, ρ1, . . . , ρk).

• Verity(PK, σ,m):

1. Parse σ = (σ1, . . . , σk, ρ1, . . . , ρk)

2. Parse PK = (PK1, . . . ,PK2k).

3. Let (h1, . . . , hk) = H2(m)

4. Check that Hn−hi(σi) = PKi for 1 ≤ i ≤ k

5. Check that Hhi−1(ρi) = PKi+k for 1 ≤ i ≤ k

6. Accept if and only if all checks pass.

Is this hard to break with a chosen message attack? Sort of.

Lemma 3.1.1. Given N Winternitz signatures, it takes O(e
2k

N+1 ) time for
an adversary to create a forgery.

Proof. We proceed with very nice argument that Youcef Mokrani gave in
class. Consider N + 1 messages m1, . . . ,mN+1. If we queried the first N to
the signer, then we forge a valid signature for mN+1 if and only if

min
1≤i≤N

{H2(mi)j} ≤ H2(mN+1)j ≤ max
1≤i≤N

{H2(mi)j} (3.2)



3.1. WINTERNITZ SIGNATURE SCHEME 97

where H2(x)j is the jth component of H2 (recall that H2 outputs k compo-
nents, each between 0 and n− 1).

Therefore, the only way we cannot forge a signature is if H2(mN+1)j is
strictly the maximum or strictly the minimum.

We then argue: each component of H2 should be independently dis-
tributed, and the output of H2 should be independently distributed for each
message (it should be if H2 looks random!). Thus, the probability that mN+1

is the maximum must be the same as the probability that mi is the maxi-
mum for any i. By symmetry, the probability is thus 1

N+1
that mN+1 is the

maximum, and also 1
N+1

that it is the minimum. Putting this together gives
2

N+1
as the probability that it is either the maximum or minimum.

This argument isn’t quite right, since we could have a sequence where
there is no strict maximum or minimum. But in that case we can forge
a signature regardless: if H2(mi)j = H2(mN+1)j, then the jth (and j +
kth) components of the signature for mi are precisely what’s needed for the
signature for mN+1.

Thus, the probability that mN+1 is the maximum or minimum, condi-
tional on there being a strict maximum or minimum, is a lower bound on the
probability that mN+1 is unforgeable.

We then have that mN+1 is forgeable if and only if it is not unforgeable
in each coordinate. The double negative is confusing, but this means the
probability of mN+1 being forgeable is

(
1− 2

N + 1

)k

≈ e−
2k

N+1 (3.3)

Inverting this gives the runtime.

Looking at this, we see that larger k buys us some time, but unfortunately
not much. The security degrades rapidly in N .

Thus, we solve this problem by fiat:

A Winternitz keypair should only ever sign one message.

For this reason we call them “Winternitz One-time Signatures” or WOTS.



98 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

3.1.1 Security

We can note briefly a few things about security. Careful security proofs for
WOTS are a bit delicate.

Pre-image resistance

The main security of the scheme comes from pre-image resistance of the hash.
If you break pre-image resistance, you can simply recover someone’s private
key directly from their public key. We can try to create a reduction the other
way.

Theorem 3.1.1. If H is a pre-image resistance hash function, then WOTS
is a one-time unforgeable signature scheme.

Sketch. Suppose we are given a challenge x for which we must find the pre-
image.

Then we will generate a standard WOTS public key and private key,
except we will select a random index i ∈ {1, . . . , 2k} and a random β ∈
{1, . . . , n}. Then instead of generating xi as the ith component of the secret
key, we will use x as Hβ(xi). That is, PKi = Hn−β(x).

The adversary is allowed to request the signature of one message. On
receiving this message m, we sign it as normal, though there is a β/n proba-
bility H2(m)i < β, and we would need to output a preimage of x to properly
sign. In this case we simply abort.

If we do not abort, and the adversary produces a forgery σ∗ for a message
m∗, we check if H2(m

∗)i = hi ≥ β. If not, we abort. If so, then we know
that Hn−hi(σ∗

i ) = PKi = Hn−β(x).
We then output y = Hhi−bβ+1(σ∗

i ), which ought to satisfy H(y) = x.

The proof above has a few issues to address:

• First, we have a β(n−β)
n

chance of aborting if the adversary’s query or
forgery do not match what we need.

• The adversary might also abort based on our public key. The public
key of a WOTS scheme is actually quite special, because all of the
elements have a chain of n iterated preimages. This is quite special,
actually! One can show that for a fixed x, the probability of choosing
a random function such that x has n preimages (let alone iterated) is



3.1. WINTERNITZ SIGNATURE SCHEME 99

asymptotically 2√
2πn

. Moreoever, for a random function, these preim-
ages will look like a tree, and the height of a random tree of size n only
has height O(

√
n) on average.

• The adversary might produce a different chain of preimages. That is,
even though Hn−hi(σ∗

i ) = PKi = Hn−β(x), this only guarantees that
at some iteration of the hash function applied to σ∗

i and x will collide.
Our hope is that they collide at precisely the hi − β − 1 iteration on
σ∗
i , so that H(Hhi−β−1(σ∗

i )) = x and we found our preimage, but the
adversary could have found a different chain.

• There’s one more problem that we’ll address in the next section. Do
you notice it?

Check [BDE+11] for a more careful treatment of this security proof.

Collision resistance

In the lecture someone asked: why not use attempt 2, which has k = 1?
Notice that collision resistance does not really help us. If an adversary

can create collisions for H, they cannot use this to break the scheme because
they need to produce careful preimages for the public key that’s given to
them. However, creating collisions for H2 does forge a signature.

More specifically, the forgery attack is like this:

1. On receiving a public key PK, find a collision for H2: m1 and m2 such
that H2(m1) = H2(m2).

2. Ask for a signature σ of m1.

3. Output (m2, σ) as the forgery.

This succeeds because the entire verification uses only the hash of the
message under H2. Since m1 and m2 have the same hash, they have the
same signature.

(this is the final missing point from the previous security proof).
In our second attempt at a Winternitz scheme, H2 had a range of only

size n. Generic collision-finding attacks have runtime O(
√
n), so even if H2

is as collision-resistant as possible, it is still not cryptographically secure.
Why not take n to be exponential? Well...



100 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

3.1.2 Performance

Consider the runtime of each component of the WOTS:

• KeyGen: Here we must iterate the hash function n times, and repeat
this 2k times. Thus, the runtime here is (more or less) 2nkT (H), where
T (H) is the time to compute H.

• Sign: We need to hash m with H2. We will need to compute H exactly
(n − 1)k times. Why exactly k? Because for each component hi of
H2(m), we compute on the x side hi times, and on the y side n−1−hi

times. Thus, the runtime is (n− 1)kT (H) + T (H2).

• Verify: Here it takes exactly the same time as signing: (n−1)kT (H)+
T (H2).

Thus, we cannot take exponential n or else it is exponential time to use
the scheme! For H2 to be collision resistant, we need the output space of H2

to be about 2λ (if λ is our security parameter), so we need k lg n = 2λ.
To keep λ fixed, if we decrease n we need to increase k. But the trade-off

favours k heavily here, suggesting n = 2 as the optimal value.
In fact, n = 2 is called a “Lamport signature scheme” and predates the

Winternitz signature scheme. The advantage of the WOTS is size. Let us
consider the signature sizes:

• Public key size: If we assume the output of H has λ bits, this will have
size 2kλ. In fact, for safety we might use 2λ bits for H if we’re worried
about collisions in H.

• Private key size: This can either be the same size, or we can generate
the public key from a PRG at runtime.

• Signature size: This is the same size as the public key, 2kλ.

An easy way to compress the public key is to hash all the values together
somehow. Since a signature should allow a verifier to recreate the public key,
they can verify that it is a preimage of the hash of the compressed public
key.

Notice here that if we take k = 2λ
lgn

, then the signature size increases as
n decreases. Thus, the WOTS gives a time-space tradeoff.



3.2. MERKLE TREES 101

3.1.3 Uses

A final note on a one-time signature scheme is: what’s the point? It doesn’t
seem that useful to be able to only sign one message.

First, it does have some use. For example, imagine an election: an election
official could publish the public key before the election, then sign the result
of the election. The one-time use is actually a benefit here, because a corrupt
official stands to lose from signing two results.

Though, this pushes the problem back: how do you verify the election
official’s public key? One strategy would be as follows: when the election
is finished and the results are tallied, the election official generates a second
WOTS public-private keypair, and then hashes together (election result, new
public key). Then they sign that hash.

Then in the next election, they do the same. To verify, you you would
verify a long chain of such one-time signatures.

Granted, this means that the effective signature length grows linearly with
the number of signatures, since you need to include all previous signatures
to fully verify this chain of trust. The rest of this chapter will focus on more
efficient methods to “bootstrap” trust like this.

3.2 Merkle Trees

Suppose we have N pieces of data X1, . . . , XN and we want to commit to
them all in such a way that:

• the commitment is small

• we can efficiently prove that we committed to a specific Xi

• we reveal nothing about anyXi that we do not prove that we committed
to

A Merkle tree will do this. To construct one, it looks like Figure 3.4 (for
N = 8)

That is, your data starts as leaves, and you hash together pairs of leaves
to make a binary tree, with each node being the hash of its two parent nodes.
The final node is the root, and you can output this as a commitment to the
full tree.



102 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

X1

H

X2

H

X3

H

X4

H

X5

H

X6

H

X7

H

X8

H

H H H H

H H

H
Root

Figure 3.4: Merkle tree

X1

H

X2

H

X3

H

X4

H

X5

H

X6

H

X7

H

X8

H

H H H H

H H

H
Root

X3

Figure 3.5: Authentication path for X3



3.3. XMSS: EXTENDED MERKLE SIGNATURE SCHEME 103

To prove that X3 was in the tree (for example), you would release the
following pieces of data, highlighted in blue in Figure 3.5.

This is called an “authentication path” and it gives enough information to
recover the root. To do so, a verifier would hash X3. Since the authentication
path also includes the hash of X4 (though not X4 itself, since we want to hide
X4; really we should include a random salt in each of the leaf hashes, but
that’s omitted to brevity), then a verifier can compute the hash of H(X3)
and H(X4), getting them to the next layer of the tree. They can continue in
this way to get to the root.

Precisely defining an authentication path would be an annoying exer-
cise in indices, so I will assume that the general principle is clear from the
diagram.

3.2.1 Performance

The initial commitment is only the root, which is constant sized.

An authentication path is only lg(N) hashes.

Computing an authentication path faces a time-space tradeoff. If we do
not store any of the Merkle tree, we need to recompute almost the entire
thing to produce an authentication path, at O(N) time. If we store all of the
nodes (of where there are 2N − 1), then it only takes O(lgN) time to select
the authentication path.

Of course, in the database example, we need O(N) storage for the original
data, so it is only a constant factor extra to store the Merkle tree in its entirety
(and in practice we’re probably committing to data which is larger than one
hash anyway).

3.3 XMSS: Extended Merkle Signature Scheme

With Merkle trees, we have enough to create XMSS.



104 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

XMSS (Extended Merkle Signature Scheme)

• KeyGen():

1. Generate N WOTS keypairs (PKi,SKi).

2. Construct a Merkle tree out of the public keys in the previ-
ous step.

3. Let PK be the root of the Merkle tree, and SK =
(SK1, . . . ,SKN).

• Sign(SK,m):

1. Pop SKi of the stack of secret keys (see discussion)

2. Set σ′ = WOTS.Sign(SKi,m).

3. Let path be the authentication path for PKi in the Merkle
tree

4. Set σ = (σ′, path,PKi).

• Verify(PK,m, σ):

1. Parse σ = (σ′, path,PKi)

2. Call WOTS.Verify(PKi,m, σ′)

3. Check that path is a valid authentication path for PKi lead-
ing to PK.

4. Output 1 if and only if both checks pass.

3.3.1 Security

Without dwelling too much on security, if H is a secure hash function, the
authentication paths should ensure that any public keys were genuinely part
of the original key generation step.

Thus, the scheme is as secure as the hash function and the underlying
WOTS.

However: how many messages can we sign? Unfortunately, only N , since
each WOTS keypair can sign only one message. And this leads to another
problem: we must ensure that we never sign two different messages with



3.3. XMSS: EXTENDED MERKLE SIGNATURE SCHEME 105

the same keypair. That means the secret key must include a list of unused
keypairs, and thus must change with each signature.

3.3.2 Performance

First we consider runtime:

• Keygen: We need to generate N WOTS keypairs, then compute about
N hashes, so the runtime is O(N(T (WOTS.Keygen) + T (H)).

• Sign: We do one WOTS signature, then compute an authentication
path. This means the time is going to be somewhere between T (WOTS.Sign)+
T (H) lgN and T (WOTS.Sign) + T (H)N

• Verify: We do one verification, then check an authentication path; this
takes time T (WOTS.Verify) + T (H) lgN

Then space:

• Public key: This is constant size, because it’s just one hash output!
(arguably it’s linear in the security level λ, but we typically treat that
as constant).

• Signature: This is the length of a WOTS signature, plus lgN hashes
for the authentication path: |WOTS|+2λ lgN (if each hash has 2λ bits
as output).

• Private key: This is quite large if we need to store all of our secret keys:
N |WOTS.SK|.

Notice that the key generation and private key size are linear in N . This
means we cannot hope to have an exponentially large number of messages
that we can sign.

We could make some quick optimizations. First, we can pseudorandomly
generate all the secret keys from a single seed. We will still need to keep
track of which ones we signed, but we can do this by iterating some counter.

Next, notice that a WOTS signature can actually generate the public
key (iterate the hash function on each component of the signature and this
should equal the public key). Thus, we can have the verifier regenerate the
public key from the signature, then check that the hash of this public key
fits the authentication path.



106 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

XMSS (Extended Merkle Signature Scheme) Slightly Optimized

• KeyGen():

1. Select a random seed s

2. Generate N WOTS keypairs pseudorandomly from s and i:
(PKi,SKi).

3. Construct a Merkle tree out of the public keys in the previ-
ous step.

4. Let PK be the root of the Merkle tree, and SK = (s, 1).

• Sign(SK = (s, i),m):

1. If i > N , abort.

2. Generate SKi from (s, i)

3. Set σ′ = WOTS.Sign(SKi,m).

4. Let path be the authentication path for PKi in the Merkle
tree

5. Set σ = (σ′, path). Set SK = (s, i+ 1)

• Verify(PK,m, σ):

1. Parse σ = (σ′, path)

2. Regnerate PKi from m and σ′

3. Check that path is a valid authentication path for PKi lead-
ing to PK.

4. Output 1 if and only if both checks pass.

3.3.3 Statefulness

The real problem with XMSS is that it is stateful: we must modify the secret
key after every signature to ensure we do not sign the same message twice.

This is problematic for a number of reasons. What if we sign the message
but the computer shuts down before we can write the new secret key to
long-term storage? What if we want to distribute the secret key to multiple



3.4. GOLDREICH SIGNATURE SCHEME 107

servers and have them sign independently?
These problems are solvable, if we’re very careful, but we would like to

avoid them altogether.

3.4 Goldreich Signature Scheme

To solve the statefulness problem, we will simply make N (the number of
WOTS in the leaves of the tree) cryptographically large so that if we choose
a random index, we will have a negligible probability of ever signinging two
messages with the same WOTS.

The problem is: XMSS (and Merkle trees generally) require you to pre-
construct the tree, so the key generation (and signing time) will also become
cryptographically large, which is... impractical.

To solve this, we need to make the tree “virtually”. That is, we can
imagine some index i for each node in the tree. We want to be able to
generate any given index independently. For this, we will use a pseudorandom
generator (call it PRG), and a single random secret seed s for the tree, and
we will imagine a virtual tree with N leaf nodes where each node (including
the leaves) is a WOTS keypair generated pseudorandomly from PRG(i, s)
(for node i).

Right now, nothing connects these keypairs. To make authentication out
of this, we will use each WOTS keypair to sign the hash of its two child
nodes.

Intuitively, the root WOTS keypair “vouches for” its two child WOTS
keypairs by signing the hash of their two public keys.. That is the only thing
the root WOTS keypair signs. Then each child keypair vouches for their
children by signing their public keys. That is, the tree looks something like
Figure 3.6.

Each non-leaf node, a WOTS keypair, signs exactly 1 message: the hash
of the public keys of its two parent nodes.

The final leaf nodes will actually sign messages.
The important fact is that because each node only signs the hash of the

public keys of its children, we can generate any node without generating its
children. We only need its children if we want to produce that signature, but
the signature is not input into any later part of the tree.

To put this all together, we need a few helper functions to help with the
indexing of the tree. As a tedious (and mostly uninformative) exercise, you



108 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

WOTSroot

WOTS1 WOTS2

Sign

PK1 PK2

H

σ1

WOTS3 WOTS4

Sign

PK3 PK4

H

σ2

WOTS5 WOTS6

Sign

PK5 PK6

H

σ3

Figure 3.6: Two layers of a Goldreich authentication tree

could come up with efficient instantiations of these functions. The tree will
have height d, and the ith layer of the tree will have 2i nodes. Here we use
the notation

[n] := {1, . . . , n}. (3.4)

• H3 : {0, 1}∗ → [2d]: This is a hash function whose output is the index
of a leaf node in the tree

• Si : [2
i]→ [2i] takes an index in layer i as input and outputs the index

of its sibling node

• Pi[2
i] → [2i−1] takes an index as input and outputs the index of its

parent node

• Ci : [2i] → [2i+1] × [2i+1] takes an index as input and outputs the
(ordered) pair of the indices of its children.

• πi,L : [2i]→ [2i] takes an index of a node in layer i as input and returns
the left node out of i and its sibling. πi,R : [2i] → [2i]: same as πi,L,
but returns the right node.

Finally, we will assume WOTS.Keygen takes as input the output of PRG,
which supplies the randomness for it.



3.4. GOLDREICH SIGNATURE SCHEME 109

Goldreich Signature Scheme (unoptimized)

• KeyGen: Select a random seed s. Generate a root WOTS
keypair (PK0,1,SK0,1) = WOTS.Keygen(PRG(s, 0, 1)). Output
PK = PK0,1, keep SK = s.

• Sign(SK,m): Compute i = H3(m) as a leaf index. Set m′ = m,
then for ℓ = d down to 1:

1. Let i′ = Sℓ(i) (the sibling node of i). Com-
pute (PKℓ,i,SKℓ,i) = WOTS.Keygen(PRG(s, ℓ, i)) and
(PKℓ,i′ ,SKℓ,i′) = WOTS.Keygen(PRG(s, ℓ, i′).

2. Compute σℓ = WOTS.Sign(SKℓ,i,m
′).

3. Compute ρℓ = H(PKℓ,i′)

4. Set m′ = H(H(PKπℓ,L(i),PKπℓ,R(i)))

5. Set i = Pℓ(i)

Finally, regenerate (PK0,1,SK0,1) =
WOTS.Keygen(PRG(s, 0, 1)) and set σ0 = WOTS.Sign(SK0,1,m

′).
Output everything in blue: σ0, . . . , σd and ρ1, . . . , ρd and
PK1,i1 , . . . ,PKd,id .

• Verify(PK,m, σ): Parse σ =
(σ0, . . . , σd, ρ1, . . . , ρd,PK1,i1 , . . . ,PKd,id). Compute i = H3(m)
as a leaf index. Set m′ = m, then for ℓ = d down to 1:

1. Call WOTS.Verify(PKℓ,iℓ , σℓ,m
′). Set hℓ,i = H(PKℓ,i) and

hℓ,i′ = ρℓ.

2. Set m′ = H(hπℓ,L(i), hπℓ,R(i)) and set i = Pℓ(i).

Call WOTS.Verify(PK, σ0,m
′). Accept if and only if all verifica-

tions passed.

(you’ll notice the use of a red hash function H. This is foreshadowing for
an attack later; we will need to be careful with this hash function).

To summarize, signing involves pseudorandomly generating a path through
the virtual true of WOTS signatures. At each level, we generate a pair of



110 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

sibling nodes, and hash together their public keys. We sign that public key
with their parent node, then continute the process with that parent node
and its sibling. Eventually we reach the parent of all nodes, the root, and we
sign with that.

Verification then traverses the same order and checks all of the signatures.
Since the root node’s public key was published originally, this provides a root
of trust for the entire chain of signatures and verifies that they should have
all been signed by the root.

To slightly optimize this, notice that WOTS signatures can regenerate
the public key. We add another function WOTS.Regen(m,σ) → PK, which
takes a message and its signature and produces the public key for that WOTS
instance. Thus, we don’t need to actually verify any signature except the
bottom. Instead, we regenerate the public key and hash it to the next layer.
If everything was done correctly, this regenerates the path through the tree as
it is supposed to; if someone is not correct, this should fail (actually reducing
this to a hash function security property would be painful).



3.4. GOLDREICH SIGNATURE SCHEME 111

Goldreich Signature Scheme (lightly optimized)

• KeyGen: Select a random seed s. Generate a root WOTS
keypair (PK0,1,SK0,1) = WOTS.Keygen(PRG(s, 0, 1)). Output
PK = H(PK0,1), keep SK = s.

• Sign(SK,m): Compute i = H3(m) as a leaf index. Set m′ = m,
then for ℓ = d down to 1:

1. Let i′ = Sℓ(i) (the sibling node of i). Com-
pute (PKℓ,i,SKℓ,i) = WOTS.Keygen(PRG(s, ℓ, i)) and
(PKℓ,i′ ,SKℓ,i′) = WOTS.Keygen(PRG(s, ℓ, i′).

2. Compute σℓ = WOTS.Sign(SKℓ,i,m
′).

3. Compute ρℓ = H(PKℓ,i′)

4. Set m′ = H(H(PKπℓ,L(i),PKπℓ,R(i)))

5. Set i = Pℓ(i)

Finally, regenerate (PK0,1,SK0,1) =
WOTS.Keygen(PRG(s, 0, 1)) and set σ0 = WOTS.Sign(SK0,1,m

′).
Output everything in blue: σ0, . . . , σd and ρ1, . . . , ρd.

• Verify(PK,m, σ): Parse σ = (σ0, . . . , σd, ρ1, . . . , ρd). Compute
i = H3(m) as a leaf index. Set m′ = m, then for ℓ = d down to
1:

1. Reonstruct PKℓ,i = WOTS.Regen(m′, σℓ). Set hℓ,i =
H(PKℓ,i) and hℓ,i′ = ρℓ.

2. Set m′ = H(hπℓ,L(i), hπℓ,R(i)) and set i = Pℓ(i).

Compute PK′ = H(WOTS.Regen(m′, σ0). Accept if and only if
PK′ = PK.

3.4.1 Performance

Briefly, by checking the algorithm description:

• Public key and secret key size: Both can be O(1), since we generate all
secret keys from a single random seed, and we hash the public key to



112 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

a constant.

• Signature size: Each σi is a WOTS signature, and ρi is just a hash
output, so the size is something like d(|WOTS.Sig|+ |H|).

• Signing time: We must generate 2d WOTS keypairs and compute d
signatures, so d(2T (WOTS.Keygen) + T (WOTS.Sign)).

• Verification time: Roughly just dT (WOTS.Regen), with a few extra
hashes.

The problem here is signature size. Recall from our security properties,
for some security target λ:

• d must be Ω(λ), because otherwise the risk of signing the same message
is too high.

• A WOTS signature has k hash outputs, where we need k lg(n) = Ω(λ).
We need n to be fairly small for performance, so we roughly have k =
Ω(λ). Each hash output also needs to have size Ω(λ) to be preimage
resistant.

Putting this all together, a Goldreich signature probably has size at least
λ3. For λ = 128, that’s already 262 kB. And this ignores parts of the scheme
that might need size 2λ to avoid collisions.

Thus, we want to optimize. SPHINCS adds two main optimizations: (1)
using a “few-time” signature scheme at the roots so that we can tolerate
possibly one or more collisions, and (2) combining XMSS and Goldreich
together for a signature size vs. signing time tradeoff.

3.5 Forest of Random Subsets (FORS)

Here we give a scheme that is a “few-time” signature scheme, i.e., it probably
should only sign one message, but it is not devestating to sign two.

The idea is this: Just as in WOTS, we first compute a message digest
h = (h1, . . . , hk) = H2(m), where hi ∈ [n]. To sign an index from 1 to n,
we pre-generate kn random values {xij}k,ni=1,j=1. The idea will be to commit
to all of these as the public key, and reveal xi,hi

for all i. How should we
commit to and reveal these? Merkle trees, of course!



3.5. FOREST OF RANDOM SUBSETS (FORS) 113

Thus, for each i from 1 to k, we have a Merkle tree to commit to
xi,1, . . . , xi,n. To sign a message m whose digest produces hi, we release
an authentication path for xi,hi

.

This works because a Merkle tree doesn’t just commit you to the values, it
commits you to the order you put them in. That’s becauseH(x∥y) ̸= H(y∥x)
for a secure hash function, so each node in the Merkle tree, which is a hash
of its two children, commits you to the ordering of its children.

Forest of Random Subsets (FORS)

• Keygen: Select a random seed s.

1. Generate kn random values {xij}k,ni=1,j=1 from a PRG and s.

2. Compute k Merkle trees Ti for (xi1, . . . , xin).

3. Output PK = H(root(T1), . . . , root(Tk)).

4. Set SK = {xij}k,ni=1,j=1.

• Sign(SK,m): Set h = (h1, . . . , hk) = H2(m). Regenerate each
Ti from a PRG and the seed s. Set σi to be an authentication
path for xi,hi

in Ti; output σ = (σ1, . . . , σk).

• Verify(PK,m, σ): Set h = (h1, . . . , hk) = H2(m). Check that
σi is an authentication path for the ith index in a Merkle tree,
and compute the root rooti, for i from 1 to k. Compute PK′ =
H(root1, . . . , rootk) and accept if and only if PK′ = PK.

3.5.1 Performance

We can make a small table of performance numbers:
FORST WOTS

Public key size O(1) O(1)
Private key size O(1) O(1)
Signature size k lg n|H| 2k|H|
Signing time O(nk) O(nk)

Verification time: O(k lg(n)) O(nk)
Besides the slight improvement in verification time, FORS is worse: the

main drawback is the signature size. However! Security degrades slower. One



114 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

5 10 15 20 25 30
0

50

100

150

200

250

Number of messages signed

B
it
se
cu
ri
ty

FORS
WOTS

Figure 3.7: Security for k = 52, n = 32 WOTS vs. FORS signature schemes.
The security is based on an attack where the adversary queries N messages,
then searches for a message whose hash allows an easy forgery.

can show (assignment) that if FORS signs N messages, then the probability
that one can forge a signature for a new message is(

1−
(
1− 1

n

)N
)k

(3.5)

which, for N ≪ n, can be approximated as e−k n−N
n . Contrast that with

WOTS, which has forgery probability e−2 k
N . Both converge to 1 as N in-

creases, but WOTS goes faster. Check Figure 3.7.

3.6 SPHINCS

We have all of the ingredients for SPHINCS, now we need to assemble them.
At its core, we can see SPHINCS as a time-memory tradeoff between a

Goldreich signature and XMSS. In the Goldreich scheme, each WOTS signed
the hash of its two children. In SPHINCS, each WOTS will have an entire
XMSS tree as its child, giving it effectively 2t children. It hashes the root of
a Merkle tree constructed out of those children.



3.6. SPHINCS 115

Because a Merkle tree requires all nodes to be known, the signer must
generate all 2t WOTS keys which are leaves of that tree at signing time.

Again we will need some indexing helper functions:

• Ii : [2
ti] → [2t]: Given an index j in layer i, outputs the index in the

Merkle tree containing j.

• Si : [2
ti] → [2ti]2

t
: Given an index j in layer i, outputs all 2t sibling

nodes for that index

• Ci : [2
ti]→ [2t(i+1)]2

t
: Given an index j in layer i, outputs all 2t children

nodes of that index

• Pi : [2
ti] → [2t(i−1)]: Given an index j in layer i, outputs the index of

the parent of the tree containing j.



116 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

SPHINCS Signature Scheme (almost)

• KeyGen: Select a random seed s. Let (PK0,1SK0,1) =
WOTS.KeyGen(PRG(s, 0, 1)). Set SK = s and PK = H(PK0,1).

• Sign(SK,m):

1. Set i = H3(m) and (PKFORS,SKFORS) =
FORS.KeyGen(PRG(s, d, i, FORS)).

2. Set σFORS = FORS.Sign(SKFORS,m).

3. Set m′ = H(PKFORS)

4. For ℓ = d down to 1:

(a) Compute (PKℓ,j,SKℓ,j) = WOTS.KeyGen(PRG(s, ℓ, j))
for j in Sℓ(i) (i.e., the leaves of the ℓth Merkle tree)

(b) Let σℓ = WOTS.Sign(SKℓ,i,m
′).

(c) Make a Merkle tree Tℓ whose leaves are H(PKℓ,j) for
all j in Sℓ(i).

(d) Compute an authentication path ρℓ for H(PKℓ,i) in Tℓ.

(e) Set m′ to be the root of Tℓ and i = Pℓ(i).

5. Let σ0 = WOTS.Sign(SK0,1,m
′).

6. Output everything in blue.

• Verify(PK,m, σ): Let i = H3(m). Let m′ =
FORS.Regen(m,σFORS). For ℓ = d down to 1:

1. Set m′ = WOTS.Regen(m′, σℓ).

2. Verify that ρℓ is a path for an element at index Iℓ(i).

3. Set m′ to be the root of the Merkle tree with m′ as input
and authentication path of ρℓ.

4. Set i = Pℓ(i)

Set PK′ = WOTS.Regen(m′, σ0). Check if H(PK′) = PK, and
accept if and only if this and all other checks passed.



3.6. SPHINCS 117

3.6.1 Performance

The SPHINCS tree will consist of d layers, each layer containing a Merkle
tree of 2t WOTS keys. This means the total number of leaves at the top (the
schemes which actually signing messages) is 2td. We need this to be about
22λ, though one other optimization is to use FORS for the final leaves, so
that we can afford a small number of collisions and thus td can be smaller.

Each layer of the tree will produce one WOTS signature and one authen-
tication path as part of the signature. Putting this together gives:

• Signature size: d(|WOTS.Sig|+ t|H|) + |FORS.Sig|

• Keygen time: T (WOTS.Keygen)

• Signing time: d(2tT (WOTS.KeyGen)+T (WOTS.Sign)+tT (H))+T (FORS.Sign).

• Verification time: d(T (WOTS.Verify) + tT (H)) + T (FORS.Verify).

Thus, we can see that the signature size grows as O(dt), while signing time
grows as O(d2t). This is how it gives the tradeoff: with d = 1 we obtain
XMSS, and with t = 1 we obtain Goldreich.

3.6.2 Multitarget Attack

Why did I highlight the hash function H in red?
Suppose an attacker requests N signatures. Each signature will give the

hash of the public key of Nt WOTS keypairs. The attackers strategy is this:
they will generate random WOTS keypairs and hash the public key with H.
If it every matches one of the public keys in their list of legitimate public
keys, they will keep that WOTS keypair (call it (PK′,PK′).

What can they do with this collision?
Once they have a collision (say, in layer i), they can forge signatures as

follows: they generate their own FORS keypair and WOTS keypairs for layers
ℓ down to i+ 1. They can sign as though they were a legitimate signer, and
this will give them the root of a Merkle tree. Now, they use their colliding
keypair (PK′,SK′) to sign this root. Then they “inject” this forgery into a
legitimate signature. Since the hash of PK′ matches the hash of a legitimate
WOTS keypair in layer i, any verifier will check the signatures up to layer
i (and they will pass because the adversary generated them as though they
were an honest party), and then the verifier will check that the next part of



118 CHAPTER 3. HASH-BASED DIGITAL SIGNATURES

the signature verified the root, which it did, because the rest of the signature
was an honest signature.

Forgery =

σFORS, σd, ρd, . . . , σi+1, ρi+1, σi︸ ︷︷ ︸
adversary generated

, ρi, σi−1 . . . , ρ1, σ0︸ ︷︷ ︸
from honest signature

 (3.6)

The important fact is that ρi was part of an honest signature, and authen-
ticates a path through a Merkle tree where the path starts with H(PKi,j).
But, the adversary has found a collision: H(PKi,j) = H(PK′), which the
adversary controls. Thus, ρi also authentications the adversary’s public key!
This allows the adversary to insert the top d − ℓ parts of the signature and
the entire thing is still valid.

Finding this collision is going to take them about O(2|H|/Nt) guesses.
This is exponential, but considered unacceptable by the SPHINCS design
team. It turns out it is easy to prevent, also: the reason this works is that
the adversary doesn’t care which WOTS public key they collide with. Thus,
using the same hash H each time allows the attack to work. If we include
some context-specific data, such as

H(x) = H(x, ℓ, i,PK) (3.7)

where ℓ is the layer in the tree and i is the index, then the only way to find
a collision is for the adversary to search for a collision with a specific node
in the tree (the public key is also thrown in there so the adversary cannot
attack multiple people’s keys at the same time). Thus, the collision attack
is still possible, but finding the collision jumps up to O(2|H|).

Specifically, the SPHINCS documentation calls this a tweaked hash func-
tion, where i, j,PK are the “tweaks” and these are basically the same as
nonces. In these notes, anywhere you see H, it should be a tweaked hash
function.



Chapter 4

McEliece (Code-based Crypto)

Great resources, from which most of the content in this chapter comes from:
Goppa Decoding
McEliece in General

4.1 Error Correcting Codes

First, we define the Hamming weight of a bitstring x ∈ {0, 1}n as

|x|Ham = number of 1s in x (4.1)

We can further treat {0, 1}n is an n-dimensional vector space over F2,
where F2 is just {0, 1} but equipped with addition and multiplication modulo
2. This means addition is just XOR and multiplication is just AND.

In this vector space, we can then define the Hamming distance of two
vectors x, y ∈ Fn

2 as

|x− y|Ham (4.2)

Here I used subtraction to make it look similar to a metric in any other space,
but really subtraction is the same as addition when done modulo 2.

Throughout this chapter, I might forget the subscript Ham; almost cer-
tainly I mean the Hamming weight in every case.

We care about Hamming weight because if we have a string x ∈ {0, 1}n,
and we send it over some noisy channel (e.g., Wifi), then some of the bits
might get flipped because of noise. We can represent that mathematically
as x̃ = x + e, where e has a 1 in all the places where the bits got flipped.

119

https://cr.yp.to/papers/goppadecoding-20220320.pdf
https://www.hyperelliptic.org/tanja/students/m_marcus/whitepaper.pdf


120 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

This means that |x̃−x|Ham = |e|Ham is a count of how many errors occurred
in transmission. The goal with error correcting codes is to correct a certain
number of errors.

A code C is a subset of {0, 1}n. We say it’s an (n, k, d)-code if it satisfies:

1. |C| = 2k

2. For any two x, y ∈ C, if x ̸= y then |x− y|Ham ≥ d.

We can easily claim the following:

Lemma 4.1.1. If C is an (n, k, d) code, then for any error vector e with
|e|Ham = t ≤ d−1

2
, it is possibly to correct x̃ = x+ e exactly to x if x ∈ C.

Proof. To show this, we claim that for any y ̸= x with y ∈ C, |y− x̃|Ham > d
2
.

To see this:

|y − x̃|Ham =|y − x+ x− x̃|Ham (4.3)

≥|y − x|Ham − |x− x̃|Ham (4.4)

≥d− t (4.5)

≥d− d− 1

2
(4.6)

>
d

2
(4.7)

where we used that x− x̃ = e, and the fact that any two distinct codewords
in C are at distance at least d.

Finally, we note that |x̃ − x|Ham = |e|Ham = t < d
2
. Thus, there is an

exact condition to check.

This shows that it is possible to correct errors. Is it efficient? So far, no:
the best method we could use is to simply iterate through C and compare.
Since C has size 2k, this is not that fast. Thus, the main goals of coding
theory are to come up with codes where:

1. the ratio of k/n is large (so we can encode a lot of data)

2. the distance d is as large as possible (so we can correct many errors)

3. decoding and encoding are fast



4.1. ERROR CORRECTING CODES 121

4.1.1 Linear Codes

In this chapter we will only use linear codes. An [n, k, d]-linear code is a
subspace C ⊆ Fn

2 which is an (n, k, d) code. Being a subspace is equivalent to
stating that for any x, y ∈ C, x+ y ∈ C (we get the other axioms of a vector
space for free because we are working over F2).

Because it is a subspace, we can equally well define the code by a generator
matrix G, such that C = span(G). This tells us that G must be an n ×
k matrix. It also gives us a very efficient encoding strategy, since matrix
multiplication is quite easy. And it makes it easy to take a natural space of
messages we might want to send (k-bit strings) and map them into the code.

We can also define a parity-check matrix H. This is a matrix such that
C = ker(H). By dimensionality arguments, this means H must be an (n −
k)× n matrix. G and H have a natural relation to each other: HG = 0. In
fact H is a maximum-rank matrix satisfying this equation.

The nice part of a parity check matrix is that if we have a codeword plus
noise like c = x+ e (which we can write as Gm+ e, since we know x = Gm
for some m), then Hc = Hx +He = He, since the parity check annihilates
the code. For a codeword c we call Hc the syndrome of H, and it is often
the first step for decoding.

Finally, neither H nor G is unique. If we take any invertible k×k matrix
S, then GS will also be a generator for the code. It will encode different
k-bit messages to different codewords, but its span is still precisely the code.

Similarly, for any (n−k)×(n−k) invertible matrix S ′, then S ′Hc = 0 for
all codewords c, so H ′ := S ′H is also a parity check matrix for the code. The
syndromes of H ′ will be different, but its kernel is still precisely the code.

4.1.2 Hardness of Decoding

Suppose I give you a random generator matrix G, and a codeword c that I
tell you is Gm+ e for a weight-t error. Can you find m?

As an assignment problem, this is equivalent to the following:

Problem 4.1.1 (Syndrome Decoding). Given an (n − k) × n parity check
matrix H and a syndrome y ∈ Fn−k

2 , find e of weight at most t such that
He = y.

It turns out this problem is NP-complete (the decisional version where
we must decide if such e exists). Thus, it stands to reason that if we can
make a cryptosystem based on this problem, it will be hard to break.



122 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

4.2 Code-Based Cryptography

It’s easy to encode a message m: we multiply by G and add a random error
of weight t. But decoding it is equivalent to syndrome decoding, which is
NP-complete, so it should be hard to recover messages. Thus, we can make
a first attempt at code-based cryptography:

• Encrypt(PK = G,m): Pick a random error of weight t, and set c =
Gm = e

• Decrypt(c): Find the codeword c′ of minimum distance from c. Use
linear algebra to recover m such that Gm = c′.

This fails because, even though Encrypt is a one-way function, we have
no efficient decryption! Decrypting is also NP-complete! And on top of all
that, how did we pick the matrix G? We have no guarantee that a random
matrix G will have distance at least 2t+1, and if it has smaller distance, we
might not decrypt correctly.

Thus, we need a family of codes where we know how to decode them
efficiently and we know the distance is at least 2t + 1. I’ll call it C. This
gives our first real attempt:

Code-based PKE: Attempt 1

• KeyGen: Select a random code C ∈ C. Compute its generator
matrix G; let PK = G and let SK = C.

• Enc(PK = G,m): Select a random error of weight t, output
c = Gm+ e

• Dec(SK = C, c): Use the decoding procedure for C to decode c
to Gm, and then invert G to find m.

Unfortunately, we’ve basically just pushed the problem down: we want to
construct a trapdoor function, and we’re just hoping that the family of codes
C has the property that recovering C (i.e., the decoding procedure) from the
generator G is hard.

And a further unfortunate fact: no family of codes has this property.
Mostly; we’ll show some subtleties around this. Instead, what we’ll do is



4.2. CODE-BASED CRYPTOGRAPHY 123

take a family of codes C that is (a) very large, (b) has the right distance and
decoding properties, and then we will hide the code.

The method of hiding will be self-explanatory from the description:

Code-based PKE: Attempt 2

• KeyGen:

1. Select a random code C ∈ C.

2. Compute a generator matrix G for C.
3. Select a random n×n permutation matrix P and a random

invertible k × k binary matrix S.

4. Let PK = A := PGS and let SK = (C, P, S).

• Enc(PK = A,m): Select a random error of weight t, output
c = Am+ e

• Dec(SK = C, c):

1. Compute c′ = P−1c(= P−1(PGSm+ e) = GSm+ P−1e)

2. Use C to decode c′ to a messagem′ such that |Gm′−c′|Ham =
t

3. Output m = S−1m′

To see why this works: A permutation matrix P is a matrix such that
every row and column has exactly one entry of 1, and the other entries are all
0. This is equivalent to P having the property that Pv will just permute the
entries of any vector v. Crucially for our purposes, this means that if e has
weight t, then P−1e has weight t also (since we just permuted the non-zero
entries, we didn’t add or remove any). This means that our decoder can
remove the error P−1e just as easily as it could remove e (and notice that
GSm is also in the code, because it’s in the span of G).

Decoding P−1e gives us m′ which is close to c′. We can see that m′ = Sm,
so multiplying by S−1 gives us m.

Just like with lattice cryptography (and lots of public key cryptography),
we have restricted our NP-complete problem so that it is easy to sample from
and use, but we lost the versatility that made it NP. Instead, we have the



124 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

following problem:

Problem 4.2.1 (C-hidden decoding problem). Let C be a random (n, k, d)
code from C with generator matrix G, P a random n × n permutation, S a
random invertible k × k matrix, and e a random vector of weight t ≤ d−1

2
.

Given A = PGS and c = Am+ e, find m.

Is this hard? For Goppa codes, detailed later, it seems to be, because this
problem was introduced in the 1970s1 and it remains unbroken.

4.3 Code-Based Protocols

Here we consider how code-based cryptography can be IND-CPA, IND-CCA,
etc.

First, we notice that our scheme above is trivially IND-CPA insecure.
The attack is as follows:

1. The challenger sends A to the adversary.

2. The adversary picks to random messages m0 and m1 and sends them
to the challenger.

3. The challenger sends back c = Amb+e, for a random bit b and random
error e

4. The adversarsary computes e′ = c−Am0. If |e′|Ham = t, the adversary
outputs b∗ = 0; otherwise, b∗ = 1.

Why does this work? Since c = Amb + e, then e′ = A(mb −m0) + e. If
b = 0, then this is just e, which has weight t. If b = 1, then A(m1 −m0) is
a non-zero codeword, which must have weight at least 2t+ 1, so |e′|Ham > t.
Thus, with no plaintext queries, the adversary wins with certainty. This is
bad!

There is a pretty quick fix: rather than encrypt m directly, we append
random bits r. That is, we encrypt m′ = [m|r]T , where r is large enough to
make m′ infeasible to guess.

This fix is IND-CCA insecure, as follows:

1In 1978 actually, just one year after RSA, and only two years after the first published
public-key crypto scheme!



4.3. CODE-BASED PROTOCOLS 125

1. The challenger sends A to the adversary.

2. The adversary picks to random messages m0 and m1 and sends them
to the challenger.

3. The challenger sends back c = A[mb|r]T +e, for a random bit b, random
error e, and random pad r.

4. The adversary selects a random x and computes c′ = c + Ax. They
send c′ to the decryption oracle.

5. Since c′ = A[mb|r]T + Ax + e, the decryption oracle will decrypt this
to m′ = [mb|r]T + x and return this to the adversary.

6. The adversary computes m′ − x = [mb|r]T , and recovers mb from the
first bits (from which they determine b trivially).

Again, the adversary wins with certainty.

We will cut off such attacks with a change of security goals.

4.3.1 Key Encapsulation Mechanisms

Since public key encryption is generally just used to encrypt the key for a
symmetric key system, why not cut out the middle and design a protocol
that directly outputs a symmetric key?

AKey Encapsulation Mechanism is three algorithmsKeyGen,Encaps,Decaps,
defined as

• KeyGen()→ (SK,PK)

• Encaps(PK)→ (c,K)

• Decaps(SK, c)→ K

That is, Encaps outputs both a ciphertext and a random session key K.

We can define security with the following game:

Definition 4.3.1 (KEM-CPA/CCAGame). Given a KEM KeyGen,Encaps,Decaps
the KEM-CPA/CCA game is:



126 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

1. A challenger generates a keypair: KeyGen() → (PK,SK). The chal-
lenger then calls Encaps(PK) = (c∗, K∗

0). They generate a random K∗
1

uniformly at random from the keyspace, and send (PK, c∗, K∗
b ) to the

adversary for a random bit b ∈ {0, 1}.

2. A receives PK, and can make a polynomial number of queries to an
encapsulation oracle, which outputs Encaps(PK, ·).

3. If we are in the CCA game: A can make a polynomial number of queries
to a decapsulation oracle, which on input c, outputs Decaps(SK, c) as
long as c ̸= c∗ (otherwise it returns ⊥).

4. A outputs a bit b′.

The adversary wins if b′ = b.

Constructing a KEM from a secure PKE is relatively easy. More precisely:

• KEM.KeyGen(): Run PKE.KeyGen() and use the same public key and
secret key.

• KEM.Encaps(PK): Select a random K from the message space. Set
c = PKE.Enc(PK, K), and output (c,K).

• KEM.Decaps(SK, c): Set K = PKE.Dec(SK, c) and output K.

This is an easy construction, and as long as the message space is large
enough, you can easily show that if PKE is IND-CPA/CCA secure, then
the new KEM is KEM-CPA/CCA secure. But actually, this is not a great
reduction, and we want to make it better, partly because our code-based
PKE is not IND-CCA secure!

4.3.2 Secure Code-based KEM

If we apply the previous KEM transform to the code-based PKE, the IND-
CCA attack readily transforms to a KEM-CCA attack. To fix it, we make
the following change (highlighted in red):

• KEM.KeyGen(): Run PKE.KeyGen() and use the same public key and
secret key.



4.3. CODE-BASED PROTOCOLS 127

• KEM.Encaps(PK): Select a random K from the message space. Set
c = PKE.Enc(PK, K), and output (c,H(K)).

• KEM.Decaps(SK, c): Set K = PKE.Dec(SK, c) and output H(K).

The core problem we were facing was that encryption is linear, and this is
problematic for IND-CCA security. The hash function destroys that linearity.
It is still easy for an adversary to construct messages c′ = A(K∗

0 + m) + e
where they know m, but they only get H(K∗

0 + m) in return, from which
they cannot recover K∗

0 .

However, this code-based KEM is still vulnerable. In fact, our code-based
PKE is not well-defined, because we did not say what should happen if the
error has an unexpected weight! If an adversary takes a valid ciphertext c
which encrypts a message m, they can add to the error vector e and produce
another encryption of m, but with a slightly larger or smaller error.

Our code guarantees that if |e| ≤ t, then we can uniquely decode Am+ e
to Am. But this is not an if and only if condition: it’s possibly that e has
weight t + 1 and we would still decode it to Am. Further, if |e|Ham < t, we
would also still decode to Am.

If we reject any ciphertext with an error greater than t, the adversary
can easily recover the error with a chosen ciphertext attack: they take a
ciphertext c = Am + e, and flip a random bit. If they guessed a 1 in e, this
decreases the weight of e, and so it will decrypt correctly; if they guessed a 0
in e they increase the weight of e and the decryption oracle will reject. With
at most n queries they recover e, and from this they get m.

Thus, our best bet will be to reject any ciphertext with an error not
exactly equal to t. However, this still has a CCA attack: the adversary can
flip two components of the error. If the two components are both 1 or both
0, then this decreases or increases the weight of the error and the challenger
rejects. If one component is 0 and the other is 1, the challenger accepts.
With at most

(
n
2

)
queries, the adversary fully recovers the error.

We need to cut off this entire avenue of attacks. Here is a tempting fix
which is still insecure:



128 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

McEliece KEM Attempt 1 (still IND-CCA insecure)

• KeyGen()

1. Select a random code C ∈ C.

2. Compute a generator matrix G for C.
3. Select a random n×n permutation matrix P and a random

invertible k × k binary matrix S.

4. Let PK = A := PGS and let SK = (C, P, S).

• Encaps(PK = A): Select a random message m, random error of
weight t, output c = Am+ e amd K = H(m)

• Decaps(SK = C, c):

1. Compute c′ = P−1c(= P−1(PGSm+ e) = GSm+ P−1e)

2. Use C to decode c′ to a message m′, and set e′ = c′ −Gm′

3. If |e′|Ham = t: Return K = H(S−1m′)

4. If |e′|Ham ̸= t: Return a random K ′

The adversary can still distinguish whether they guessed the error cor-
rectly because when they guess correctly, the decryption oracle always gives
the same K. To fix this problem, we include the ciphertext itself in the hash
to the key. That way, if the ciphertext changes, so does K, cutting off this
avenue of distinguishing.



4.3. CODE-BASED PROTOCOLS 129

McEliece KEM Attempt 2 (still IND-CCA insecure)

• KeyGen()

1. Select a random code C ∈ C.

2. Compute a generator matrix G for C.
3. Select a random n×n permutation matrix P and a random

invertible k × k binary matrix S.

4. Let PK = A := PGS and let SK = (C, P, S).

• Encaps(PK = A): Select a random message m, random error of
weight t, output c = Am+ e and K = H(c,m)

• Decaps(SK = C, c):

1. Compute c′ = P−1c(= P−1(PGSm+ e) = GSm+ P−1e)

2. Use C to decode c′ to a message m′, and set e′ = c′ −Gm′

3. If |e′|Ham = t: Return K = H(c, S−1m′)

4. If |e′|Ham ̸= t: Return a random K ′

This is still insecure. The problem is that the output is random when e′

has the wrong weight! This means the adversary can just submit the same
ciphertext twice and check whether the output changes.

We need the key in the case of failure to be deterministic. It should
depend on the ciphertext, to avoid the same matching attack as before. If
we just do H(c, r) for a fixed random r, then the adversary can just compare
the key it receives to H(c, r) if it knows r (since the adversary knows c).
Thus, r must remain a fixed, long-term secret of the scheme; it basically has
the same security properties as the secret key itself, so why not use the secret
key? Thus, we use H(c,SK) when there is a decryption failure.

Finally, we append a 0 if there is no decryption failure and append a 1
if there is a failure. I don’t know exactly why this is necessary; there might
not be an attack, but using different hashes (so-called domain separation) is
always a good idea. Thus, we get the actual scheme:



130 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

McEliece KEM Attempt 3 (finally IND-CCA secure)

• KeyGen()

1. Select a random code C ∈ C.

2. Compute a generator matrix G for C.
3. Select a random n×n permutation matrix P and a random

invertible k × k binary matrix S.

4. Let PK = A := PGS and let SK = (C, P, S).

• Encaps(PK = A): Select a random message m, random error of
weight t, output c = Am+ e and K = H(c,m, 0)

• Decaps(SK = C, c):

1. Compute c′ = P−1c(= P−1(PGSm+ e) = GSm+ P−1e)

2. Use C to decode c′ to a message m′, and set e′ = c′ −Gm′

3. If |e′|Ham = t: Return K = H(c, S−1m′, 0)

4. If |e′|Ham ̸= t: Return K ′ = H(c,SK, 1)

4.3.3 Neideretter Variant

The smallest parameter of McEliece submitted to NIST uses k = 2720, n =
3488, t = 64. We ony need 128 bits of entropy2 so 2720 bits of message is
overkill.

Instead, we can use the error for the shared secret. To avoid sending a
message at all, we will use the parity check matrix H. We can similarly hide
the parity check matrix as SHP for a random invertible n−k×n−k matrix
S and a random. n×n permutation P . This gives us the Neideretter variant:

2These parameters target 128-bit security; we would use bigger parameters if we want
more entropy



4.3. CODE-BASED PROTOCOLS 131

Neideretter KEM (Unoptimized)

• KeyGen(): Select a random Goppa code C and compute its
parity check matrix H. Select a random permutation P and
random invertible matrix S. Let PK = H ′ = SHP , and SK =
(C, P, S).

• Encaps(PK = H ′):

1. Select a random error e of weight t.

2. Let c = H ′e and K = H(c, e, 0).

3. Output (c,K).

• Decaps(SK, c):

1. Compute c′ = S−1c(= HPe)

2. Solve the linear system Hy = c′ to find some y (this means
y = Gm+ e for some random message m)

3. Use the Goppa decoder to recover e′, an error vector of
weight t such that He′ = c′

4. Set e = P−1e

5. If |e|Ham = t: Set K = H(c, e, 0)

6. If |e|Ham ̸= t: Set K = H(c,SK, 1).

(we’ll discuss later how a Goppa decoder can directly recover the errors,
rather than decoding a codeword. As an assignment problem, these are
equivalent tasks).

Notice right now that H is a (n − k) × n matrix, so this is smaller than
G iff n − k < k. The ciphertext c in an n − k-dimensional vector, which is
smaller than n (the size of ciphertexts in plain McEliece), so we saved slightly
there.

However, the main saving is the following: Recall that the parity check
H is not unique. We can actually reduce H to [I|H0] with row reduc-
tions/Gaussian elimination. Thus, the optimized Neideretter system sends
just H0.

Is this still safe? Yes:



132 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

Lemma 4.3.1. Receiving H ′ = SH for a random invertible matrix S is
polynomially equivalent to receiving H0 such that H = [I|H0].

Proof. This is a bit of a vague statement, but the idea is that we can read-
ily compute one from the other. First, notice that row reductions can be
expressed as left multiplication. In fact, if H = [H1|H2], then

H−1
1 H = [H−1

1 H1|H−1
1 H2] = [I|H−1

1 H2] (4.8)

and this tells us that H0 = H−1
1 H2.

Then, suppose we are given H ′ = SH. We know this equals [SH1|SH2]
(even though we don’t know H1 or H2). But, from just H ′, we can compute
the inverse of the first block, (SH1)

−1 = H−1
1 S−1. If we multiply H ′ by this:

(SH1)
−1H ′ = [H−1

1 S−1SH|H−1
1 S−1SH2] = [I|H−1

1 H2] = [I|H0]. (4.9)

Thus, we computed H0 from H ′.

For the converse, where we’re given H0, select a random invertible matrix
S. This has the same distribution as SH1, so we can assume we randomly
selected SH1. Then

(SH1)[I|H0] = [SH1|SH1H0] = [SH1|SH2] = SH (4.10)

as needed.

Thus, if we output just H0, this is just as hidden as SH, and there is a
significant space savings: H0 is only a (n−k)×k matrix (since we can ignore
the first n− k columns, which are the identity). This gives us the optimized
Neideretter variant:



4.3. CODE-BASED PROTOCOLS 133

Neideretter KEM (Optimized)

• KeyGen():

1. Select a random Goppa code C and compute its parity check
matrix H.

2. Select a random permutation P and compute H ′ = HP .

3. Row reduce H ′ to [I|H0] (if not possible, choose a new per-
mutation) and let S be the matrix such that SH ′ = [I|H0].

4. Let PK = H0, and SK = (C, P, S).

• Encaps(PK = H0):

1. Select a random error e of weight t.

2. Let c = [I|H0]e and K = H(c, e, 0).

3. Output (c,K).

• Decaps(SK, c):

1. Compute c′ = S−1c(= HPe)

2. Solve the linear system Hy = c′ to find some y (this means
y = Gm+ e for some random message m)

3. Use the Goppa decoder to recover e′, an error vector of
weight t such that He′ = c′

4. Set e = P−1e

5. If |e|Ham = t: Set K = H(c, e, 0)

6. If |e|Ham ̸= t: Set K = H(c,SK, 1).

Let’s compare the sizes:

McEliece Neideretter
Public Key Size n× k (n− k)× k
Ciphertext Size n n− k

The computational complexity is basically the same; we’ll see that gen-
erating a parity check matrix for a Goppa code is pretty easy.



134 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

4.4 Goppa Codes

This section will detail some of the basics of Goppa codes. This gives some
proofs of key properties, mainly for completeness. For understanding the
McEliece scheme, you can skip just to the “Key Facts” Section 4.4.4.

4.4.1 Binary Fields

To talk about Goppa codes, we first recall some basics of finite fields.
The field F2 is defined as the integers modulo 2. This means there are

two elements: 0 and 1, and addition is XOR, and multiplication is AND.
This also means addition and subtraction are the same.

We can then define F2[x], the ring of all polynomials with coefficients in
F2. Multiplication and addition of polynomials is done as expected, i.e.,

(1 + x+ x2)(x+ x3) = x+ x2 + x3 + x3 + x4 + x5 = x+ x2 + x4 + x5 (4.11)

where x3 + x3 = 0 because the coefficient would be “2”, which is equivalent
to 0.

We say a polynomial p(x) is irreducible if we cannot write it as p(x) =
f(x)h(x) for two polynomials f(x) and h(x) of degree at least 1. This is
nearly the same as saying that p(x) is prime, and has a similar consequence:
we can define the quotient ring

F2[x]/p(x) (4.12)

where we mod out by p(x), and if p(x) is irreducible then every non-zero
element of this quotient is invertible (i.e., it is a field).

If p(x) has degree r, then this field has 2r elements. One way to see this
is to notice that every polynomial in F2[x]/p(x) has degree at most r − 1
(or is equivalent to such a polynomial), and we can just count how many
polynomials there are with that degree by counting the possible choices of
coefficients.

It turns out that all fields with 2r elements are isomorphic to each other.
So while our choice of irreducible polynomial p(x) will change the multipli-
cation rules, there is some isomorphisms. This means that often we just talk
about Fq

∼= F2[x]/p(x), where q = 2r, and think about that as a unique
object. The only difference is how we would represent objects in this field.



4.4. GOPPA CODES 135

Since Fq is a field, we can form a vector space over Fq, and this allows
us to define codes in this space: a linear code over Fq will be a subspace
C ⊆ Fn

q . We can similarly define a Hamming weight of c ∈ Fn
q as the number

of non-zero elements of c.

4.4.2 Defining Goppa Codes

Given our field Fq, we can form another polynomial ring Fq[x], which is the
ring of all polynomials with coefficients in Fq. This means the coefficients can
be thought of as polynomials themselves. We can similarly define irreducible
polynomials in this ring.

Thus, to construct a Goppa code of size n that can correct up to t errors,
we select two things:

• an irreducible polynomial g(x) ∈ Fq[x], of degree t;

• n distinct elements of Fq, α1, . . . , αn.

Then the codespace is defined as:

C =

{
(c1, . . . , cn) ∈ Fn

q |
n∑

i=1

ci
x− αi

≡ 0 mod g(x)

}
(4.13)

Let’s unpack this a little bit. Since x− αi ̸= 0 mod g(x), it has an inverse.
So we are adding up all the inverses of these polynomials, multiplied by the
coefficients of a codeword c, and that must be equivalent to 0 modulo g(x).

Actually, this is slightly inaccurate: we will restrict to C ∩ Fn
2 , i.e., only

consider ci ∈ {0, 1}. The rest of this section works just fine either way, but
we will need this fact for the decoding technique.

We could also define a Goppa code by a parity check matrix H, which we
can define element-wise as

Hij =
αj
i

g(αi)
(4.14)

where 1
g(αi)

means the inverse of g(αi) as an element of Fq.
The first thing we’ll prove is that these are equivalent.

Theorem 4.4.1. A string c is in C if and only if

n∑
j=1

cjα
j
i

g(αi)
= 0 (4.15)



136 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

for all j ∈ {1, . . . , n}.

To prove this, we first prove a short claim. Define the following polyno-
mials:

A(x) =
n∏

i=1

(x− αi) (4.16)

and

B(x) =
n∑

i=1

ciA(x)

g(αi)(x− αi)
(4.17)

and

C(x) =
n∑

i=1

ciA(x)

x− αi

(4.18)

We first prove:

Lemma 4.4.1. The polynomial B(x) has degree < n− t if and only if g(x)
divides C(x).

Proof. To do this proof, we first recall that we can take derivatives of polyno-
mials in these polynomials and they behave the same way as we would expect
from calculus class. The useful fact for our purposes is that the product rule
holds, so

A′(x) =
n∑

j=1

∏
i ̸=j

(x− αi) (4.19)

=
n∑

j=1

A(x)

x− αj

(4.20)

which means that
A′(αj) =

∏
j ̸=i

(x− αi) (4.21)

We can similarly note that

B(αj) =
cj
∏

j ̸=i(x− αi)

g(αj)
=

cjA
′(αj)

g(αj)
(4.22)

and similarly
C(αj) = cjA

′(αj) (4.23)



4.4. GOPPA CODES 137

This means g(αj)B(αj) = C(αj) for all αj. This means that (x−αj) divides
g(x)b(x)− C(x), for all αj, which means A(x) divides g(x)B(x)− C(x).

This basically gives us the Lemma: the degree of A(x) is n, but the degree
of C(x) is at most n− 1 and so is the degree of B(x). Thus, if the degree of
B(x) is less than n − t, then the degree of g(x)B(x) is less than n as well.
This means the degree of g(x)B(x) − C(x) is less than n. The only way
A(x) can divide a polynomial of degree less than n is if the polynomial is 0,
meaning g(x)B(x) = C(x). This tells us that g(x) divides C(x).

Conversely, suppose g(x) divides C(x), meaning that C(x) = g(x)C1(x)
for some polynomial C1(x). We know that deg(C1) ≤ n−t−1, since deg(C) ≤
n − 1 and deg(g) = t. Then we see that g(x)B(x) − C(x) = g(x)(B(x) −
C1(x)). We know that A(x) and g(x) are co-prime (since g(x) is irreducible),
so we can conclude that since A(x) divides g(x)B(x) − C(x), then A(x)
divides B(x)− C1(x).

Then we use a similar degree argument: we know that deg(B) ≤ n − 1
and deg(C1) ≤ n − 1. Again, the only way they could be divisible by A(x)
is if B(x) − C1(x) = 0. But in turn this means that deg(B) = deg(C1) ≤
n− t− 1.

Notice that g(x) dividing C(x) is equivalent to C(x) ≡ 0 mod g(x),
which is equivalent to c ∈ C, by definition of C(x) (we can factor out A(x),
since we know it is co-prime to g(x)).

Now we define yet another polynomial:

Q(x) =
n∑

i=1

ciA(x)α
t
i

g(αi)(x− αi)
(4.24)

Then we can define S(x) = xtB(x)−Q(x).

Lemma 4.4.2. deg(S) < n if and only if deg(B) < n− t.

Proof. Because deg(Q) ≤ n−1, this is straightforward to see: the coefficients
of terms greater than n − t in B(x) will not be cancelled out by Q(x) in
xtB(x) − Q(x), so they will remain non-zero. Thus, the only way to cancel
out all coefficients greater than n − 1 in S(x) is for xtB(x) to not have any
such terms, but that means deg(B) < n− t.

To proceed, we do a bit of algebra on S(x) first:

S(x) =xTB(x)−Q(x) (4.25)



138 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

=
n∑

i=1

ciA(x)x
t

g(αi)(x− αi)
−

n∑
i=1

ciA(x)α
t
i

g(αi)(x− αi)
(4.26)

=
n∑

i=1

ciA(x)

g(αi)

xt − αt
i

x− αi

(4.27)

=
n∑

i=1

ciA(x)

g(αi)
(xt−1 + αxt−2 + α2xt−3 + · · ·+ αt−2x+ αt−1) (4.28)

=A(x)
n∑

i=1

ci
g(αi)

(xt−1 + αix
t−2 + α2

ix
t−3 + · · ·+ αt−2

i x+ αt−1)︸ ︷︷ ︸
:=R(x)

(4.29)

(4.30)

The second-last line is a classic polynomial identity.
We can then see that if R(x) ̸= 0, then deg(S) = deg(A)+deg(R). Since

deg(A) = N , then deg(S) < n if and only if R = 0. We can re-group R(x)
by powers of x:

R(x) =
t−1∑
j=0

xj

n∑
i=1

ciα
t−1−j
i

g(αi)
=

t−1∑
j=0

xj

n∑
i=1

ciH(t−j)i (4.31)

If R = 0, then all coefficients must be 0, so we have (Hc)s = 0 for all
1 ≤ s ≤ t, or Hc = 0. Tracing back all the implications:

• c ∈ C if and only if g(x) divides C(x);

• g(x) divides C(x) if and only if deg(B) < n− t;

• deg(B) < n− t if and only if deg(S) < n;

• deg(S) < n if and only if R(x) = 0;

• R(x) = 0 if and only if Hc = 0

Thus, we proved the theorem.

4.4.3 Decoding Goppa Codes

How do we know Goppa codes are actually a code? As in, that they have a
minimum distance?



4.4. GOPPA CODES 139

We will prove this very constructively: we will give a decoding algorithm,
then argue that it is correct as long as we have up to t errors.

Suppose we have a received messages s = c + e, where c is in the code
and e is a vector of errors. Recall that we restricted c ∈ Fn

2 , so e ∈ Fn
2 as

well. That means we can define a set e ⊆ [n] (abusing notation slightly) of
all the 1s in e, and then define an error polynomial:

E(x) =
∏
i∈e

(x− αj) (4.32)

Of course, we cannot actually compute this error polynomial given s (yet)
because we have not found the errors. Instead we’ll do some algebra to find
out what we can compute.

First, take the derivative:

E ′(x) =
∑
i∈e

∏
j∈e,j ̸=i

(x− αj) =
∑
i∈e

E(x)

(x− αj)
(4.33)

so that we have
E ′(x)

E(x)
=
∑
i∈e

1

x− αj

mod g(x) (4.34)

Why did I throw on mod g(x) all of a sudden? This is because I want
to invert polynomials. We could work in a more general setting of rational
functions, but this will be easier for now. Partly this is because of the next
claim:

Lemma 4.4.3. Define

s(x) =
n∑

i=1

si
x− αi

mod g(x). (4.35)

Then E′(x)
E(x)
≡ s(x) mod g(x).

Proof. Notice that s = c+ e, so

n∑
i=1

si
x− αi

=
n∑

i=1

ci
x− αi

+
n∑

i=1

ei
x− αi

mod g(x) (4.36)



140 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

and then we notice that the first term is 0, because ci is in the code, and
that’s how we defined the code! Then for the second term, we see that ei = 0
unless i ∈ e, so we have

n∑
i=1

si
x− αi

=
n∑

i=1

ei
x− αi

=
E ′(x)

E(x)
mod g(x) (4.37)

The nice thing is that we can easily compute s(x) from the public data.
But how can we find E(x) from this? First, suppose we write

E(x) = E0 + E1x+ E2x
2 + · · ·+ Eℓx

ℓ (4.38)

where ℓ is the weight of the error. Then we can split this into odd and even
parts (suppose ℓ is odd; it’s easy to handle in general but the notation is
annoying).

E(x) =E0 + E2x
2 + E4x

4 + · · ·+ Eℓ−1x
ℓ−1 + E1x+ E3x

3 + · · ·+ Eℓx
ℓ

(4.39)

=E0 + E2x
2 + E4x

4 + · · ·+ Eℓ−1x
ℓ−1︸ ︷︷ ︸

:=EE(x)

+x (E1 + E3x
2 + · · ·+ Eℓx

ℓ−1)︸ ︷︷ ︸
:=EO(x)

(4.40)

Then we have a key fact:

Lemma 4.4.4. E ′
E(x) = E ′

O(x) = 0.

Proof. Consider that the derivative will be

E ′
E(x) = 2E2x+ 4E4x

3 + · · ·+ (ℓ− 1)Eℓ−1x
ℓ−2 (4.41)

However, all even numbers are equivalent to 0 because we’re in F2. Thus,
E ′

E(x) = 0. Similarly for E ′
O(x).

This means we can find E ′(x) with the product rule:

E ′(x) = E ′
E(x) + EO(x) + xE ′

O(x) = EO(x). (4.42)

Then we use one last lemma to show that EE and EO are actually squares:



4.4. GOPPA CODES 141

Lemma 4.4.5. If q = 2r and a polynomial p(x) = Fq[x] has only terms with
even powers of x, then there exists some q(x) such that p(x) = q(x)2.

Proof. First, the multiplicative group F∗
q has size 2

r−1 which is odd, so every
element of Fq has a square root. We then prove by induction on deg(p).

If deg(p) = 0, then it holds because p ∈ Fq and each element has a square
root.

If deg(p) = 2k + 2, then we can write p(x) = p1(x) + c2k+2x
2k+2, where

p1(x) also only has even powers and has degree k. By induction, p1(x) =
q1(x)

2. Then we set q(x) = q1(x) +
√
c2k+2x

k+1 (where
√
c2k+2 exists by the

previous argument), and find that

q(x)2 =(q1(x) +
√
c2k+2x

k+1)2 (4.43)

=q1(x)
2 + 2q1(x)

√
c2k+2x

k+1 + c2k+2x
2k+2 (4.44)

=p1(x) + c2k+2x
2k+2 (4.45)

=p(x) (4.46)

Thus, EE(x) and EO(x) have square roots; let’s call them a(x) and b(x).
So we have that

E(x) = a(x)2 + xb(x)2 (4.47)

and
E ′(x) = EO(x) = b(x)2 (4.48)

Thus, we get the equation

b(x)2

a(x)2 + xb(x)2
≡ s(x) mod g(x) (4.49)

which we can rearrange to

a(x)2 ≡ b(x)2
(
s(x)−1 − x

)
mod g(x) (4.50)

Since g(x) is irreducible, we could rearrange this to show that s(x)−1−x has
a square root in Fq[x]/g(x). Finding polynomial square roots modulo g(x)
is not too hard (easy-to-understand but slightly inefficient method: take
any polynomial to the power of qt/2). Thus, if we let r(x) =

√
s(x)−1 − x

mod g(x), we can write

a(x) ≡ b(x)r(x) mod g(x) (4.51)



142 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

or
a(x) = b(x)r(x) + g(x)k(x) (4.52)

for some k(x). The key fact here is that we can readily compute r(x) and
we know g(x); we don’t know a(x), b(x), or k(x). To find them, we use the
Euclidean algorithm!

We initialize the Euclidean algorithm with b(x) = 1 and k(x) = 0, so
that a(x) = r(x). Thus, we more-or-less have deg(b) = 0 and deg(a) = t− 1.
What we should have is that deg(a) ≤

⌊
t
2

⌋
and deg(b) ≤

⌊
t
2

⌋
, so we run the

Euclidean algorithm and at each step the degree of b increases and the degree
of a decreases. Thus, they will hit this threshold, and we are done.

Are we? This will give us polynomials ã and b̃ of the right degree which
satisfy the above equation. Are we sure they are the right ones?

Suppose they were distinct, so that

ã(x) = b̃(x)r(x) + g(x)k̃(x) (4.53)

Then there is some coefficient c such that deg(b̃(x) − cb(x)) < deg(b). Sub-
tracting the two equations we get

ã(x)− ca(x) = (b̃(x)− cb(x))r(x) + g(x)(k̃(x)− ck(x)) (4.54)

But there is a problem with degrees here: For any equation x(x) = y(x)r(x)+
g(x)z(x), if deg(x) < deg(g) then deg(y(x)r(x)) = deg(g(x)z(x)), so that
the top-most degrees can cancel out. This further means that if deg(a) =
deg(ã), then deg(b) = deg(b̃) and deg(k) = deg(k̃). But this contradicts
deg(b̃(x)− cb(x)) < deg(b) unless deg(ã(x)− ca(x)) < deg(a) (and same for
k), but the only way that can happen is if the leading coefficient of ã is c
times the leading coefficient of a.

We can continue this logic with the next degree, and so forth, eventually
concluding that ã(x) = ca(x) and b̃(x) = ca(x). So, the result we get is
correct up to a scalar. But, we know that EO(x) and EE(x) are monic (since
E(x) is monic), and so a(x) and b(x) must also be monic. Thus, we can
choose the monic polynomials satisfying this.

Finally, we assemble Ẽ(x) = a(x)2+xb(x)2. By the above reasoning, this
must be equivalent to E(x) modulo g(x). Since g(x) has degree t, they will
be equal as polynomials as long as deg(E) < t− 1, meaning as long as there
are at most t− 1 errors.

Two final notes: In fact the code can correct up to t errors, and I don’t see
why (maybe something to do with the extra degree bump from multipliying



4.5. FINAL DESCRIPTION 143

b(x)2 by x? or arguing that we know that since E(x) is monic, if it has degree
t, it is still easy to recover from E(x) mod g(x)?)

Second, I don’t understand why we wouldn’t apply the same logic to a(x)
and b(x) and conclude that these will be correct with up to degree t− 1, and
thus correct up to 2(t− 1) + 1 = 2t− 1 errors.

4.4.4 Key Facts

Ignoring the gory details of Goppa codes, the important facts for the McEliece/Neideretter
cryptosystems are:

1. The code is defined over a binary extension Fq for q = 2m (though
codewords are still in F2)

2. The code is parameterized by an irreducible polynomial g(x) ∈ Fq[x]
of degree t and n distinct elements (α1, . . . , αn).

3. The parity check matrix H has a canonical form in Fq as Hij =
αi
j

g(αj)
(if

we index i from 0 to t − 1). This has dimension t × n; however, since
we want to express this over F2 and only use codewords in F2, each
row expands by a factor m (the degree of the extension Fq), so H is in
Fmt×n
2 .

4. The message space is k such that n−k = mt (based on the dimensions
of H), so k = n−mt.

5. The code can correct errors of weight up to t (the degree of g).

6. The decoding can be done once we know g(x) and α1, . . . , αn, and
recovers the error directly.

4.5 Final Description

Recall that in McEliece system, we had a generator matrix G and we hid
this with a permutation P and an invertible transformation S. Here we
show that with Goppa codes and the Neideretter variant, this hiding is sort
of redundant.



144 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

Lemma 4.5.1. Let H1 be the (canonical) parity check matrix for a Goppa
code C1. Then for any permutation P , there is a Goppa code C2 with parity
check matrix H2 such that H2 = H1P .

Similarly, P−1G1 = G2 for the respective generator matrices.

Proof. Suppose the first Goppa code is parameterized by (g(x), α1, . . . , αn).

The parity check matrix can be written as Hij =
αi
j

g(αj)
(if we index the rows

starting at 0). Given the permutation P , we generate the second Goppa code
as

(g(x), αP (1), . . . , αP (n)) (4.55)

where I’m abusing notation slightly and use P to refer to both a permutation
and a permutation matrix. That is, we shuffle the elements α according to P .

This means (H2)ij =
αj
P (i)

g(αP (i))
. That is, each column of H2 is a column of H1,

just shuffled according to P . That’s exactly what we get from H1P , giving
the result (you could write out the matrix multiplication more carefully, but
this should give the intuition). Similar logic applies for G1 and G2.

In other words, our choice of Goppa code already gives us the freedom
to choose different permutations. Thus, the distribution of PG, where P is
a random permutation and G is the generator for a random Goppa code, is
the same as the distribution of just G.

Recall that in the Neideretter scheme, we did not need the invertible
matrix S because we get the same effect by row-reducing H. Thus, putting
this all together, we get “Classic McEliece”, as it was submitted to NIST:



4.6. CRYPTANALYSIS 145

Classic McEliece

• KeyGen():

1. Select a random Goppa code C from g(x) and (α1, . . . , αn)
and compute its parity check matrix H.

2. Row reduce H ′ to [I|H0] (if not possible, choose a new per-
mutation) and let S be the matrix such that SH ′ = [I|H0].

3. Let PK = H0, and SK = (g(x), α1, . . . , αn, S).

• Encaps(PK = H0):

1. Select a random error e of weight t.

2. Let c = [I|H0]e and K = H(e, c, 0).

3. Output (c,K).

• Decaps(SK, c):

1. Compute c′ = S−1c(= HPe)

2. Solve the linear system Hy = c′ to find some y (this means
y = Gm+ e for some random message m)

3. Use the Goppa decoder to recover e′, an error vector of
weight t such that He′ = c′

4. Set e = P−1e

5. If |e|Ham = t: Set K = H(c, e, 0)

6. If |e|Ham ̸= t: Set K = H(c,SK, 1).

4.6 Cryptanalysis

4.6.1 Recovering the Code

As an assignment problem, it is easy to recover the parameters of the Goppa
code given the “canonical form”. But what can we do after we row reduce
it?

This is still a hard problem, and I am not aware of any techniques to



146 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

attack this problem directly. We can write this more formally:

Problem 4.6.1. Given an irreducible g(x) ∈ Fq[x] and n distinct elements

α1, . . . , αn ∈ Fq, given SH for random S and Hij =
αi
j

g(αj)
, recover g(x) and

α1, . . . , αn.

My only claim that this should be hard is that this problem has been
known since the 1970s and has not been solved. In fact, the best known
attacks against the McEliece cryptosystem are generic decoders.

4.6.2 Information Set Decoding

This is an attack that will directly solve the decoding problem for any code.
We can think of it in two versions:

Primal Attack : Suppose we are given c = Am + e and a n × k A, but
we do not know a decoder for A. We start by selecting k random rows of A;
call them I. Let [A]I be A restricted to those rows. If [A]I is invertible, we
call I an information set.

Some simple linear algebra shows us that

[c]I ] = [A]Im+ [e]I (4.56)

so if we multiply the entire thing by [A]−1
I (which we can compute in poly-

nomial time):

[A]−1
I [c]I = m+ [A]−1

I [e]I (4.57)

We recover m if we find some way to remove the final term. Actually, this
is basically as hard as the original problem, so instead of finding a way to
remove it, we simply hope that [e]I = 0. This is somewhat likely since e has
only t non-zero entries, so choosing k entries of e has a non-zero chance of
success.

How can we check if we are correct? One way is to let m′ = [A]−1
I [c]I

and check if c−Am′ has weight at most t, which should occur if and only if
m = m′ by the properties of the code.

Thus, our algorithm is something like this:

1. Repeat until success:



4.6. CRYPTANALYSIS 147

(a) Select a random information set I (i.e. k rows of A)

(b) Compute m′ = [A]−1
I [c]I

(c) If |c− Am′|Ham ≤ t, output m′ and exit.

What is the runtime? First, there are
(
n
k

)
choices of information set

(roughly: about half will be non-invertible, but we will ignore that in the
asymptotics). To be correct, we need to choose k rows out of the n− t rows
of e which are 0, so that is

(
n−t
k

)
. This means our probability of success in

each iteration is
(n−t

k )
(nk)

, and thus the runtime is:

O

( (
n
k

)(
n−t
k

)) = O

(
n!(n− t− k)!

(n− k)!(n− t)!

)
. (4.58)

Approximating this gets a bit rough. We can see that if we fix k and t
and increase n, then the runtime decreases (intuitively, the number of errors
stays fixed if t is constant, and if n increases, then there are more 0s we could
choose). Thus, to make security increase, we need to increase t along with
n.

Dual Attack. In the Neideretter variant, we are given H and y = He, and
we want to find low-weight e.

Notice that if we row-reduce H as SH = [I|H0], then Sy = [I|H0]e =
[e1|H0e0], if e = [e1|e0]T . If we are very lucky, we will have all the errors
in e1, so that e0 = 0. Then Sy = e1. We can test if we are correct by (a)
ensuring that |Sy|Ham ≤ t and (b) H[Sy|0]T = y.

But, there is a small chance that e has this form. Thus, we need a
way to randomly permute e. For a random permutation P , we have that
(HP )(P−1e) = He = y. Thus, we compute H ′ = HP . Then we compute
the matrix S ′ such that S ′H ′ = [I|H ′

0]. Then notice that

S ′y = S ′He = S ′HPP−1e = S ′H ′(P−1e) = [I|H ′
0](P

−1e) (4.59)

and if we guessed a permutation such that P−1e = [e′1|0]T , we can find e′1 by
checking S ′y. If we ever succeed, we know P−1 so we can recover e itself.

Putting this together:

1. Repeat until success:



148 CHAPTER 4. MCELIECE (CODE-BASED CRYPTO)

(a) Select a random permutation P

(b) Compute S ′ such that S ′HP = [I|H ′
0] (i.e., row-reduce)

(c) Check if S ′y has (a) Hamming weight at most t; (b) (HP )(S ′y) =
y. If so, output P [S ′y|0]T and halt.

Let’s compute the runtime. There are n! permutations we can choose.
To count how many are successful, notice that the non-zero entries of e are
fixed. For the first non-zero entry of e, we can pick any of the first n − k
rows of e (since those correspond to the identity part of [I|H0]). Then for
the second non-zero entry, we can pick any of n − k − 1 rows, etc. Overall
there are

(n− k)(n− k − 1)(n− k − 2) . . . (n− k − t+ 1) =
(n− k)!

(n− k − t)!
(4.60)

choices for how to permute e’s ones into the first n− k rows. Then we need
to choose where the 0s go; there are n− t remaining spots in the vector, and
n− t zeroes we need to move, so there are (n− t)! choices. This means the

probability of a successful permutation is
(n−k)!

(n−k−t)!
(n−t)!

n!
, giving a runtime of

O

(
n!

(n−k)!
(n−k−t)!

(n− t)!

)
= O

(
n!(n− k − t)!

(n− k)!(n− t)!

)
. (4.61)

Look, it’s exactly the same as the primal attack!
Finally, I’ll point out that each step of this iteration involves inverting a

matrix. Notice that in the primal attack we invert a k × k matrix and in
the dual attack we invert a (n − k) × (n − k) matrix, suggesting that the
optimal algorithm is based on whether k or n−k is larger. However, modern
Information Set Decoding involves numerous other optimizations (i.e. ways
to perturb an unsuccessful solution to nearby information sets without much
extra work), so there may be other factors.



Chapter 5

MPC-in-the-head

5.1 Multi-Party Computation

5.1.1 Secret Sharing

Secret sharing is an old cryptographic idea, where we have a secret x and we
want to distribute it to n independent parties, with two main goals:

1. there is some number k such that if k parties work together, they can
recover x

2. if fewer than k parties get together, they get no information about x

As a practical example, many cryptocurrencies are pushing for systems
like this to hold the secret key for someone’s cryptocurrency wallet among
many different devices. The idea is that even if some of your devices are
compromised or lost, you can still use your cryptocurrency.

As a more provocative example, suppose you discover a polynomial time
factoring algorithm. You would want to announce the discovery without
publishing the technique so that people move away from RSA before deves-
tating cyberattacks, but this creates a pretty big personal risk to yourself
from essentially every nation-state security agency. You could encrypt your
algorithm and send the encryption, along with a share of the secret key, to a
number of close friends and/or prominent cryptographers as a contingency. If
something happens to you, they could get together to recover your algorithm.

For this course, we will only care about “n-out-of-n” secret sharing, mean-
ing k = n in the above description. This is much easier to do. Suppose we

149



150 CHAPTER 5. MPC-IN-THE-HEAD

have Zq, integers modulo q. Then we have a very easy secret sharing scheme
for a secret x:

1. For the first n− 1 shares, select uniformly random xi ∈ Zq

2. Set xn = x−
∑n−1

i=1 xi mod q.

Given x1, . . . , xn, to recover x we simply add them together.
This hides the secret information-theoretically, because we also have that

xi = x −
∑

j ̸=i xj mod q for all i. That is, we could have selected any set
of n− 1 shares and picked them uniformly randomly, and set the remaining
share as above.

For notational simplicity, we will use [x] to denote the shares of x. You
can think of this as an n-dimensional vector, where each element is a share.
If we need to refer to a particular share, we’ll use [x]i.

To do multiparty computation, we want some way to perform compu-
tations on x using only the secret shares of x, without communicating the
secrets. This can be challenging, and is the core problem behind the field of
secure multi-party computation.

5.1.2 Affine Computations

We can clearly see that if we have shares [x] of x and [y] of y, then [x] + [y]
(as vectors, i.e., each party i just adds their shares [x]i + [y]i mod q) is a
valid sharing of x+ y. To be even more explicit, we can see that

n∑
i=1

([x]i + [y]i) =
n∑

i=1

[x]i +
n∑

i=1

[y]i (5.1)

=x+ y mod q (5.2)

Similarly, for a fixed constant c, we can compute c[x] as a vector (i.e.,
each party multiplies their share by c) will be a valid sharing of cx.

Finally, we can also compute [c + x] locally from a constant c and [x].
One way is to nominate a specific party (say, 1) and have them add c to their
share.

Thus, all affine transformations of a collection of secrets x, y, z, . . . , i.e.,
f(x, y, z, . . . ) = axx+ayy+azz+ · · ·+c for fixed constants ax, ay, az, . . . and
c, can be done with only local computations.

Shamir secret sharing (which can be t-out-of-n) is also locally affine.



5.1. MULTI-PARTY COMPUTATION 151

5.1.3 Multiplications

While we can do affine computations, what happens if we want to compute
[xy] given the shares [x] and [y]? This is quite hard, it turns out. Notice that

xy =

(
n∑

i=1

[x]i

)(
n∑

j=1

[x]j

)
(5.3)

=
n∑

i,j=1

[x]i[y]j (5.4)

so each party can compute [x]i[y]i, but they need cross terms [x]i[y]j. They
can’t get these without sending their share to another party, but this ruins
the secrecy of the scheme.

One way to do this is to use Beaver triples (named after the inventor, not
the animal). These are a shares of uniformly random a and b, and shares of
c such that ab = c mod q. We’ll leave the problem of obtaining these triples
for now, and focus on how to use them.

Given [x] and [y] that we want to multiply, each party can compute
[x − a] and [y − b] locally. Then, the parties “open” these by broadcasting
their shares. This means all parties can locally compute ϵ := x − a mod q
and δ := y − b mod q.

Because a and b were uniformly random, this is like a one-time pad: we
have perfectly hidden x and y. Granted, if we learned a then we would learn
x from ϵ (and vice versa), so a and b must stay completely secret, but we are
safe if they remain secret.

From this, each party can locally compute [z] = δ[x−a]+ϵ[y−b]+ϵδ−[c].
We have that z = xy mod q. Proof:

[z] =δ[x] + ϵ[y]− ϵδ − [c] (5.5)

=(y − b)[x] + (x− a)[y]− (y − b)(x− a)− [ab] (5.6)

=[yx− bx] + [xy − ay]− yx+ bx+ ax+ ab− [ab] (5.7)

=[yx− bx+ xy − ay − yx+ bx+ ax+ ab− ab] (5.8)

=[yx] (5.9)

5.1.4 General Computations

We now have addition, multiplication, and input of constants in Zq. This
turns out to be universal for our purposes. Circuits aren’t computationally



152 CHAPTER 5. MPC-IN-THE-HEAD

universal: a circuit can’t be Turing complete for the simple reason that a
circuit can only take inputs of a fixed size. However, they can do something
quite different: given any function f : {0, 1}m → {0, 1}n, there is a circuit
that implements this function (generally with n2O(m logm) gates).

This means that if we have any NP language L, and a function f which
takes as input x and a witness w for x, and outputs whether x ∈ L, we
can compile that into a circuit for x of a fixed size (with some appropriate
polynomial bound on the length of w).

The fact that we will use is that this also holds modulo q: any function
f : Zm

q → Zn
q can be written as a circuit, and then we need a universal set of

gates. Addition and multiplication (and arbitrary inputs) are universal for
such circuits.

Putting all these facts together, we can claim that our MPC techniques
allow us to compute any function as described above.

5.1.5 MPC Difficulties

There is an acronym for the goals of computer security, “CIA”, which stands
for:

Confidentiality : Data should stay secret.

Integrity : Data should not be modifiable.

Availability : Data (and its processing systems) should be available and
functional when needed.

So far, we have confidentiality and integrity for our MPC system. But
what about integrity?

Here’s a simple example. During an MPC multiplication, the parties
broadcast their shares of ϵ (i.e., shares [x+a]). But in what order? If party i
broadcasts last, after seeing all the other shares, they have full control over ϵ:
they can output anything they want, and no one has any idea because their
share [x + a]i is random and secret. But since they’ve already seen [x + a]j
for j ̸= i, they can simply pick a value α and set

[x+ a]i = α−
∑
j ̸=i

[x+ a]j mod q (5.10)

and then every party will find ϵ = α.



5.2. MPC-IN-THE-HEAD 153

It’s hard to see how this is useful for basic multiplication, but there are
many cases where this completely breaks security: honest parties think they
are computing f(x) on their secret x, but the adversary can corrupt the
output to anything they want.

Modern MPC protocols use many techniques to avoid this problem. MPC
in the head will use a different technique to solve this problem.

A second problem is availability. First, an adversarial user can simply stop
engaging with the MPC protocol. This is easy to detect (and would hopefully
result in that user being removed from the system so it can continue; in k-out-
of-n schemes such an adversary can simply be ignored). But there are more
subtle methods of sabotage: what if the adversary computes the wrong thing
for their local shares? How do you detect this? Again, this is a hard problem
for actual MPC, but we will solve it relatively easy for MPC-in-the-head.

The point here is that we are only scratching the surface of MPC; MPC
in the head departs for its purposes here.

5.2 MPC-in-the-head

5.2.1 Background: Commitment Schemes

A hacker has discovered a major vulnerability, and wants to get credit for it
once it becomes public, but they do not want to publish it before patches have
been deployed because that’s dangerous. Can they achieve both goals? Yes:
they can find some way to commit to a proof-of-concept exploit code, and
they can post that commitment publicly (e.g., to Twitter). Once the patches
are deployed, they can give a way to open the commitment. The scheme
should be designed so that the hacker cannot switch out the committed
value, i.e., that it binds them to the original value, so it acts as a proof that
they knew the input when they posted the commitment.

More formally, there are two algorithms:

• Commit(m) → (c, o): c is a commitment to post publicly, o is a secret
openining

• Open(c, o) → m: With the commitment and opening, this can create
the message.

We want two properties:



154 CHAPTER 5. MPC-IN-THE-HEAD

• Hiding : An adversary who provides two messages m0 and m1 should
not be able to distinguish c← Commit(m0) from c← Commit(m1) (i.e.,
do not include the opening).

• Binding : It should be infeasible to find two openings o1 and o2 such
that ⊥ ̸= Open(c, o1) ̸= Open(c, o2) ̸= ⊥. That is, both openings are
valid but they produce distinct messages.

We could formalize hiding and binding more carefully, but these defini-
tions will do for now.

There are many ways to build commitment schemes, but one that is
simple enough for us is to take a collision-resistant hash function H, and
construct the scheme as:

• Commit(m): Generate a random string r. Let c = H(m, r) and let
o = (m, r).

• Open(c, o = (m, r)): Check whether c = H(m, r); if so, output m,
otherwise output ⊥.

You can see that collision-resistance of the hash gives the binding prop-
erty, and the entropy in the random string r gives it the hiding property.

5.2.2 Basic Idea

We will build a Σ protocol from MPC. Our basic idea for MPC-in-the-head
is something like this: in an MPC protocol, we can consider three types of
data:

• data which is local to a specific party (ex: their share of some secret
[x])

• data which is broadcast publicly (ex: their share of the final output
value [y], which is opened and published)

• data which is sent on a private channel between party i and j.

In our n-out-of-n scheme, we had no private channels, but this is common in
more general MPC.

Because MPC can compute any arithmetic circuit and thus any function,
we can prove that we know some value x such that f(x) = y, for a publicly-
known function f and public value y.



5.2. MPC-IN-THE-HEAD 155

For our Σ-protocol to prove this knowledge, the prover will start by sim-
ulating an MPC computation of f(x) by sharing x in a k-out-of-n scheme.

The commitment of the Σ-protocol will be a commitment (in the com-
mitment scheme sense) to all local data, all publicly broadcast data, and all
private channels.

The challenge will be a subset I of the parties of size less than k.

The response will the openings of the commitments for all public data,
all local data for parties in I, and all private channels to and from a party
in I.

The verifier then repeats the computations of the parties in I, using the
input and broadcast data. They check that the messages that party i should
have posted (according to their computation) match what party i actually
posted. If this holds for all i ∈ I and the final output is y, the verifier
outputs “True”, otherwise “False”.

We have three goals for a Σ-protocol:

This scheme is clearly complete, because the views will all be consistent
with each other.

The scheme is zero-knowledge because the verifier receives the views of
fewer than k parties from a k-out-of-n MPC computation; for Shamir secret
sharing or the n-out-of-n described above, this is information-theoretically
zero-knowledge1.

Soundness is the hard part. We can start by treating all parties in I
as honest, because the verifier checked that they behaved exactly as honest
players. There’s a slight problem which is that the initial shares of the secret
[x] might have been corrupted (that is, there is an implicit “dealer” that
we have not dealt with), but it’s straightforward to argue that whatever the
shares of [x] in I, they could be valid secret shares of [x], so we can safely
assume they are honest and blame parties not in I for any inconsistency.

Then our question is: what happens if the other players misbehave? We
will play it safe and assume that the underlying MPC scheme is not robust
at all. This means that if a player i misbehaves (i.e., does some computation
besides what they are supposed to), it is undetectable to any other party.
This means that the only way to detect this misbehaviour, from the verifier’s
point of view, is to open the internal view of the misbehaving party.

The second thing we will assume (conservatively) is that if any one party

1Zero-knowledge means information-theoretic by definition, but I wanted to emphasize
this



156 CHAPTER 5. MPC-IN-THE-HEAD

misbehaves, they can fully control the computation. For our n-out-of-n shar-
ing this is easy to see: in the final step, when the parties open the output y,
one party i can simply look at everyone else’s share yj and send yi = y−

∑
j ̸=i

mod q, whether or not this was actually their share yi.
Thus, from a soundness point of view, we need to ensure that the verifier

sees every point of view, otherwise there could be some misbehaving party.
Now, this means that we only have special soundness (in the Σ-protocol

sense) if we use an n-out-of-n scheme: if two transcripts (Com,Chal,Res) and
(Com,Chal′,Res′) differ only in the challenge and response, we can only be
guaranteed to reproduce a real input x such that f(x) = y if the union of I
from Chal and I ′ from Chal′ is all of [n]. This is only guaranteed if |I| = n−1.

This means that if we apply the Fiat-Shamir transform, the scheme is
sound. Thus, we have a non-interactive zero-knowledge proof (equiv. a
signature scheme), right? No.

Soundness Subtleties

We skipped the details of the Fiat-Shamir transform, but there is a very slight
loss of tightness: namely, there is some probability that H(Com) = H(Com′)
for two distinct commitments.

In our case, if the challenger asks for a set of size n − 1, there are only(
n

n−1

)
=
(
n
1

)
= n different choices. Thus, there is a 1

n
chance that they ask

for the same thing twice!
This causes problems with the Fiat-Shamir security reduction, but is it

a problem in practice? Yes: if the prover wants to cheat, they will pick one
party (say, i) and corrupt party i’s computation to create the output y, even
though the initial shares are for a value x such that f(x) ̸= y. The prover
loses if the verifier picks a set containing i, but there is a 1

n
chance that the

verifier does not pick i.
Generally, we want cryptographic soundness: the probability that a cheat-

ing prover wins should be on the order of 2−128, for example. This is infeasible
with the above scheme, since we can’t generate a scheme with n = 2128 par-
ties!

It also tells us that n-out-of-n is the most efficient scheme (given our
assumptions on robustness, etc.). If we had a k-out-of-n scheme, then the
chance that the verifier picks the misbehaving party is only k

n
(since the

selection of the cheater and the set I are independent, imagine picking I
first and then choosing the cheater). This means the cheating prover wins



5.2. MPC-IN-THE-HEAD 157

with probability n−k
n
.

How do we get the security up to 2−128? We simply repeat. A malicious
prover has a 1

n
chance of winning each time, but if they must win every time

then the chance goes down to 1
nm if we repeat m times.



158 CHAPTER 5. MPC-IN-THE-HEAD



Bibliography

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in pres-
ence of errors. pages 403–415, 2011.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the con-
crete hardness of learning with errors. Journal of Mathematical
Cryptology, 9(3):169–203, 2015.

[BDE+11] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas
Hülsing, and Markus Rückert. On the security of the Winter-
nitz one-time signature scheme. pages 363–378, 2011.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant
learning, the parity problem, and the statistical query model.
pages 435–440, 2000.

[KSSS22] Neal Koblitz, Subhabrata Samajder, Palash Sarkar, and Sub-
hadip Singha. Concrete analysis of approximate ideal-SIVP to
decision ring-LWE reduction. Cryptology ePrint Archive, Report
2022/275, 2022. https://eprint.iacr.org/2022/275.

[vW96] Paul C. van Oorschot and Michael J. Wiener. Improving im-
plementable meet-in-the-middle attacks by orders of magnitude.
pages 229–236, 1996.

159

https://eprint.iacr.org/2022/275

	Introduction
	Learning With Errors: Kyber and Dilithium
	Learning With Errors
	Basic Definitions
	Pathological LWE
	Parameter Reductions
	Two main forms of LWE
	Search and Decision
	LWE Encryption

	Lattices
	Short Vectors
	Close Vectors
	Connection to LWE
	Primal Attacks
	Dual Attacks
	Lattice Basis Reduction
	SVP Solvers
	Sieving

	LWE Constructions
	Kyber
	Dilithium


	Hash-based Digital Signatures
	Hash Function Attacks
	Winternitz Signature Scheme
	Security
	Performance
	Uses

	Merkle Trees
	Performance

	XMSS: Extended Merkle Signature Scheme
	Security
	Performance
	Statefulness

	Goldreich Signature Scheme
	Performance

	Forest of Random Subsets (FORS)
	Performance

	SPHINCS
	Performance
	Multitarget Attack


	McEliece (Code-based Crypto)
	Error Correcting Codes
	Linear Codes
	Hardness of Decoding

	Code-Based Cryptography
	Code-Based Protocols
	Key Encapsulation Mechanisms
	Secure Code-based KEM
	Neideretter Variant

	Goppa Codes
	Binary Fields
	Defining Goppa Codes
	Decoding Goppa Codes
	Key Facts

	Final Description
	Cryptanalysis
	Recovering the Code
	Information Set Decoding


	MPC-in-the-head
	Multi-Party Computation
	Secret Sharing
	Affine Computations
	Multiplications
	General Computations
	MPC Difficulties

	MPC-in-the-head
	Background: Commitment Schemes
	Basic Idea



