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Models of quantum computers

m NIST is working on post-quantum public key standards
m This requires quantum cryptanalysis

m This requires models of quantum computers

|
How do you imagine a quantum computer?
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Goal 1: Fairly compare classical and quantum resources

How do we compare a quantum bit of security to a classical bit of security?
How do we cost mixed classical /quantum algorithms like Kuperberg's sieve?

Previous work: Analysis of Brassard-Hgyer-Tapp (BHT)

m BHT provided a quantum collision-finding algorithm with quantum access to
classical memory.

m Bernstein argued van Oorschot-Wiener is more efficient after fully accounting for
memory costs.

Brassard, Hgyer, Tapp. 1997. Quantum Algorithm for the Collision Problem

Bernstein. 2009. Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete?
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Goal 2: View gates as processes

(TH

(T T o{s]—
Time—

Time/Space—




B ) e B B B om
) W) o 1B ——— R
- @ e 8-

Many physical qubits One logical qubit
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Memory peripheral framework

Model computation as “memory” acted on by a “memory controller”.

Examples:
m Turing machine: head + tape
m RAM: CPU + random access memory
m Quantum circuit: Random access machine + qubits
Premises:
Memory is a physical system that changes over time
A memory controller interacts with a memory

The cost of a computation is the number of interactions
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Premise 1. Memory is a physical system

Free evolution

Caused by:
m Noise

m Ballistic computation

Costly evolution

Caused by the controller.

We model a quantum computer as a parallel random access machine with new
instructions for quantum gates

m e.g.: apply gate x to qubit y at time ¢
Result: quantum algorithms are classical programs
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The cost of a computation is the number of interactions.
m We ignore the construction cost
m We focus on the cost to the controller

There are opportunity costs: What else could the controller do?

11
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We provide physical justifications for two cost models: G-cost and DW-cost.
Both are qubit memories with a standard universal gate set (Clifford + T).

Differences:
m G-cost: Passive error correction.
m DW-cost: Active error correction.

12
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Error correction

Passive/Non-volatile memory

To preserve: keep cool.
m Paper

m Magnetic discs

Active/Volatile memory

To preserve: continuously refresh.
= DRAM

m Surface codes (quantum)

13
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[1] Bravyi and Terhal. 2009. A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes.
[2] Kitaev. 2003. Fault-tolerant quantum computation by anyons.

Dennis, Kitaev, Landahl, Preskill. 2002. Topological Quantum Memory.
14
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[1] Bravyi and Terhal. 2009. A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes.
[2] Kitaev. 2003. Fault-tolerant quantum computation by anyons.

Dennis, Kitaev, Landahl, Preskill. 2002. Topological Quantum Memory.
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Costs

m Assumption: Passive error correction.
(Physical, not just technological, assumption)

m Cost: 1 RAM operation per gate
m Total cost: Number of gates (“G")

m Assumption: Active error correction.
m Cost: 1 RAM operation per qubit per time step
m Total cost: DepthxWidth (“DW")

15
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m £y is public parameter,
E /A is public key

m Parameterized by a large
prime p (e.g. p ~ 2%3%)

m Red path is secret key
(length log p/2)

16
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Tani's collision-finding algorithm

To find a collision between two functions f : X — Sand g: Y — S:
m Random walk on two Johnson graphs: one over X, the other over Y
m Check for collisions at each step
m Make it quantum!

Johnson graph over X

Vertices: R-element subsets of a fixed set X.
Vertices u and v are adjacent iff [uNv| =R —1.

Tani. 2007. An improved claw finding algorithm using quantum walk.
18
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Tani's collision-finding algorithm

To find a collision between two functions f : X — Sand g: Y — S:
m Random walk on two Johnson graphs: one over X, the other over Y
m Check for collisions at each step
m Make it quantum!

Johnson graph over X

Vertices: R-element subsets of a fixed set X.
Vertices u and v are adjacent iff [uNv| =R —1.

Query-optimal parameters:

R = # queries = time

Tani. 2007. An improved claw finding algorithm using quantum walk.
18
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00@0000000

Tani's collision-finding algorithm

To find a collision between two functions f : X — Sand g: Y — S:
m Random walk on two Johnson graphs: one over X, the other over Y
m Check for collisions at each step
m Make it quantum!

Johnson graph over X

Vertices: R-element subsets of a fixed set X.
Vertices u and v are adjacent iff [uNv| =R —1.

Query-optimal parameters to attack SIKE:

R = # queries = time = p/6+o(1)

Tani. 2007. An improved claw finding algorithm using quantum walk.
18
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Memory access

Quantum Query:

Analogy for Cryptographers

m Any physical “side channel’ leaks information
m Any leaked information decoheres (destroys) the state

m Controller must implement circuits for all possible inputs

10
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Memory costs

For N bits of random-access quantum memory:

Idle memory

m G-cost: Free
m DW-cost: O(N) RAM ops per time step

Random access

m G-cost: O(N) RAM ops
m DW-cost: O(N log N) RAM ops

20
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Johnson vertex data structure

History independence

For quantum interference between random walk paths, the representation of a vertex
must be independent of the path taken.

Bernstein, Jeffery, Lange, Meurer. 2013. Quantum algorithms for the subset-sum problem
21
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Johnson vertex data structure

History independence

For quantum interference between random walk paths, the representation of a vertex
must be independent of the path taken.

History-dependent:

m Binary tree as linked list

Bernstein, Jeffery, Lange, Meurer. 2013. Quantum algorithms for the subset-sum problem
21
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Johnson vertex data structure

History independence

For quantum interference between random walk paths, the representation of a vertex
must be independent of the path taken.

History-dependent:
m Binary tree as linked list
History-independent:
m Quantum radix tree: superposition over all layouts

m Sorted array: physically in order

Bernstein, Jeffery, Lange, Meurer. 2013. Quantum algorithms for the subset-sum problem
21
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Idea: We already pay O(N) for memory access, so pay O(N) to physically sort array:

Al o | 0 0 o | - 0 0

A: a1 e dk—1 Ak dk+1 e drR—1 1

29
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1. “Fan out” an input x
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2. Compare all elements simultaneously
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2. Compare all elements simultaneously

A 0 0 1 1 1 1

A: ai cee ak—1 ak Ak+1 . aR_1q x
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3. Conditionally swap “up”
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3. Conditionally swap “up”

A’: |0 | 0 1 1| - 1 1

A/ : X e X X EP . =]~ ) adr—1
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4. Conditionally swap “down”

s N e
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4. Conditionally swap “down”

A 0 0 1| 1 1 1

A/: X X X X X X
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5. Clear comparison bit
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5. Clear comparison bit
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7. Clear fan-out
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8. Insertion complete

Al o | 0 0 o | - 0 0

29



Motivation Memory peripheral framework Cost models Analysis of SIKE Summary

0000000800

Costs of Tani's algorithm for SIKE

Previous analyses focused on the p'/® query cost of Tani’s algorithm.

Using the Johnson vertex data structure, we find the SIKE secret at cost:
Gates Depth Width DW
Tani (query—optimal) p1/3+o(1) p1/6+o(1) p1/6+o(1) p1/3+o(1)

2434 < p < 2951

vicl
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Previous analyses focused on the p'/® query cost of Tani’s algorithm.

Using the Johnson vertex data structure, we find the SIKE secret at cost:

Tani (query-optimal)
Tani (G-optimal)
Tani (DW-optimal)

Gates
pl/3+o(1)
p1/4+o(1)

p1/4+o(1)

Depth
pl/6+o(1)
pl/4+o(1)

p1/4+o(1)

Width
pl/6+o(1)
pod)
pe®

DW
pl/3+o(1)
pl/4+o(1)

p1/4+o(1)

2434 < p < 2951
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Previous analyses focused on the p'/® query cost of Tani’s algorithm.

Using the Johnson vertex data structure, we find the SIKE secret at cost:

Gates Depth Width DW
Tani (query-optimal) | pt/3+o(1) | pi/6+e(1) | p1/6+o(1) | y1/3+0(1)
Tani (G-optimal) pl/4+o(1) | pl/4+o(1) p°) pl/A+o(1)
Tani (DW-optimal) | pl/4+o() | pl/a+e(d) | po(1) | pl/a+o(1)
Grover (G-optimal) pl/4+o(1) | pl/4+o(1) p°) pl/A+o(1)

2434 < p < 2951
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The classical controller can apply gates to every qubit to run Tani's algorithm.
It could instead group them together and run Grover's search algorithm.

O(p*/1?) Tani: O(p'/%) qubits

O(pH/2)

Grover and Rudolph. 2004. How significant are the known collision and element distinctness quantum algorithms
24
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The classical controller can apply gates to every qubit to run Tani's algorithm.
It could instead group them together and run Grover's search algorithm.
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Grover and Rudolph. 2004. How significant are the known collision and element distinctness quantum algorithms
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O(p"/®) copies of Grover finds isogeny in time O(p'/®).
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Grover and Rudolph. 2004. How significant are the known collision and element distinctness quantum algorithms
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m Time/query-optimal Tani has O(p'/°) classical control processors.
m We could reprogram these to run van Oorschot-Wiener (VW)
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Comparison with van Oorschot-Wiener

m Time/query-optimal Tani has O(p'/%) classical control processors.
m We could reprogram these to run van Oorschot-Wiener (VW)

Conclusion

O(p'/®) parallel instances of van Qorschot-Wiener find isogeny in time O(p'/8), faster
than the quantum algorithms.

75
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Memory peripheral framework

Memory is a physical system that changes over time
A memory controller interacts with a memory

The cost of a computation is the number of interactions

Conclusions

m In a quantum computer, qubits are a peripheral of a classical computer.
m Quantum memory access has a linear gate cost.
m Active error correction gives cost to the identity gate.

m SIKE is more secure than previously thought.
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